Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop3 Structured version   Visualization version   GIF version

Theorem neibastop3 31333
Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
Assertion
Ref Expression
neibastop3 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
Distinct variable groups:   𝑡,𝑛,𝑣,𝑦,𝑗,𝑥   𝑗,𝐽   𝑥,𝑛,𝐽,𝑣,𝑦   𝑡,𝑜,𝑣,𝑤,𝑥,𝑦,𝑗,𝐹,𝑛   𝜑,𝑗,𝑛,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦   𝑗,𝑋,𝑛,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑤,𝑡,𝑜)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑡,𝑗,𝑛,𝑜)

Proof of Theorem neibastop3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . 4 (𝜑𝑋𝑉)
2 neibastop1.2 . . . 4 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
3 neibastop1.3 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
4 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
51, 2, 3, 4neibastop1 31330 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 neibastop1.5 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
7 neibastop1.6 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
81, 2, 3, 4, 6, 7neibastop2 31332 . . . . . . . 8 ((𝜑𝑧𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)))
9 selpw 4114 . . . . . . . . 9 (𝑛 ∈ 𝒫 𝑋𝑛𝑋)
109anbi1i 726 . . . . . . . 8 ((𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅) ↔ (𝑛𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅))
118, 10syl6bbr 276 . . . . . . 7 ((𝜑𝑧𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)))
1211abbi2dv 2728 . . . . . 6 ((𝜑𝑧𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)})
13 df-rab 2904 . . . . . 6 {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)}
1412, 13syl6eqr 2661 . . . . 5 ((𝜑𝑧𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
1514ralrimiva 2948 . . . 4 (𝜑 → ∀𝑧𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
16 sneq 4134 . . . . . . 7 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1716fveq2d 6092 . . . . . 6 (𝑥 = 𝑧 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑧}))
18 fveq2 6088 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1918ineq1d 3774 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹𝑥) ∩ 𝒫 𝑛) = ((𝐹𝑧) ∩ 𝒫 𝑛))
2019neeq1d 2840 . . . . . . 7 (𝑥 = 𝑧 → (((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅))
2120rabbidv 3163 . . . . . 6 (𝑥 = 𝑧 → {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
2217, 21eqeq12d 2624 . . . . 5 (𝑥 = 𝑧 → (((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅}))
2322cbvralv 3146 . . . 4 (∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑧𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
2415, 23sylibr 222 . . 3 (𝜑 → ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
25 toponuni 20484 . . . . . . . . . 10 (𝑗 ∈ (TopOn‘𝑋) → 𝑋 = 𝑗)
26 eqimss2 3620 . . . . . . . . . 10 (𝑋 = 𝑗 𝑗𝑋)
2725, 26syl 17 . . . . . . . . 9 (𝑗 ∈ (TopOn‘𝑋) → 𝑗𝑋)
28 sspwuni 4541 . . . . . . . . 9 (𝑗 ⊆ 𝒫 𝑋 𝑗𝑋)
2927, 28sylibr 222 . . . . . . . 8 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ⊆ 𝒫 𝑋)
3029ad2antlr 758 . . . . . . 7 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 ⊆ 𝒫 𝑋)
31 sseqin2 3778 . . . . . . 7 (𝑗 ⊆ 𝒫 𝑋 ↔ (𝒫 𝑋𝑗) = 𝑗)
3230, 31sylib 206 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = 𝑗)
33 topontop 20483 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3433ad3antlr 762 . . . . . . . . . 10 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑗 ∈ Top)
35 eltop2 20532 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑜𝑗 ↔ ∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜)))
3634, 35syl 17 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜𝑗 ↔ ∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜)))
37 elpwi 4116 . . . . . . . . . . . . . . 15 (𝑜 ∈ 𝒫 𝑋𝑜𝑋)
38 ssralv 3628 . . . . . . . . . . . . . . 15 (𝑜𝑋 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
3937, 38syl 17 . . . . . . . . . . . . . 14 (𝑜 ∈ 𝒫 𝑋 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
4039adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
41 simprr 791 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
4241eleq2d 2672 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ 𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
4333ad3antlr 762 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑗 ∈ Top)
4425adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → 𝑋 = 𝑗)
4544sseq2d 3595 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑜𝑋𝑜 𝑗))
4645biimpa 499 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜𝑋) → 𝑜 𝑗)
4737, 46sylan2 489 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑜 𝑗)
4847sselda 3567 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥𝑜) → 𝑥 𝑗)
4948adantrr 748 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑥 𝑗)
5047adantr 479 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑜 𝑗)
51 eqid 2609 . . . . . . . . . . . . . . . . . . 19 𝑗 = 𝑗
5251isneip 20661 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑥 𝑗) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ (𝑜 𝑗 ∧ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜))))
5352baibd 945 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ Top ∧ 𝑥 𝑗) ∧ 𝑜 𝑗) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜)))
5443, 49, 50, 53syl21anc 1316 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜)))
55 pweq 4110 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑜 → 𝒫 𝑛 = 𝒫 𝑜)
5655ineq2d 3775 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑜 → ((𝐹𝑥) ∩ 𝒫 𝑛) = ((𝐹𝑥) ∩ 𝒫 𝑜))
5756neeq1d 2840 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑜 → (((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
5857elrab3 3331 . . . . . . . . . . . . . . . . 17 (𝑜 ∈ 𝒫 𝑋 → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
5958ad2antlr 758 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6042, 54, 593bitr3d 296 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6160expr 640 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥𝑜) → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6261ralimdva 2944 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6340, 62syld 45 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6463imp 443 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6564an32s 841 . . . . . . . . . 10 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
66 ralbi 3049 . . . . . . . . . 10 (∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅) → (∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6765, 66syl 17 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6836, 67bitrd 266 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜𝑗 ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6968rabbi2dva 3782 . . . . . . 7 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅})
7069, 4syl6eqr 2661 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = 𝐽)
7132, 70eqtr3d 2645 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)
7271expl 645 . . . 4 (𝜑 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽))
7372alrimiv 1841 . . 3 (𝜑 → ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽))
74 eleq1 2675 . . . . 5 (𝑗 = 𝐽 → (𝑗 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘𝑋)))
75 fveq2 6088 . . . . . . . 8 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
7675fveq1d 6090 . . . . . . 7 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
7776eqeq1d 2611 . . . . . 6 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
7877ralbidv 2968 . . . . 5 (𝑗 = 𝐽 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
7974, 78anbi12d 742 . . . 4 (𝑗 = 𝐽 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})))
8079eqeu 3343 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
815, 5, 24, 73, 80syl121anc 1322 . 2 (𝜑 → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
82 df-reu 2902 . 2 (∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
8381, 82sylibr 222 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030  wal 1472   = wceq 1474  wcel 1976  ∃!weu 2457  {cab 2595  wne 2779  wral 2895  wrex 2896  ∃!wreu 2897  {crab 2899  cdif 3536  cin 3538  wss 3539  c0 3873  𝒫 cpw 4107  {csn 4124   cuni 4366  wf 5786  cfv 5790  Topctop 20459  TopOnctopon 20460  neicnei 20653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-topgen 15873  df-top 20463  df-topon 20465  df-nei 20654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator