Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgel1 Structured version   Visualization version   GIF version

Theorem neicvgel1 40459
Description: A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
neicvgel.x (𝜑𝑋𝐵)
neicvgel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
neicvgel1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐺,𝑗,𝑘,𝑙,𝑚   𝑛,𝐺,𝑜,𝑝   𝑖,𝑀,𝑗,𝑘,𝑙   𝑛,𝑀,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem neicvgel1
StepHypRef Expression
1 neicvg.d . . . 4 𝐷 = (𝑃𝐵)
2 neicvg.h . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 neicvg.r . . . 4 (𝜑𝑁𝐻𝑀)
41, 2, 3neicvgbex 40452 . . 3 (𝜑𝐵 ∈ V)
5 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
6 simpr 487 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
76pwexd 5271 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
8 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
95, 7, 6, 8fsovf1od 40352 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
10 f1ofn 6609 . . . . 5 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
119, 10syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
12 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1312, 1, 6dssmapf1od 40357 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
14 f1of 6608 . . . . 5 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
1513, 14syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
16 neicvg.g . . . . 5 𝐺 = (𝐵𝑂𝒫 𝐵)
175, 6, 7, 16fsovfd 40348 . . . 4 ((𝜑𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵m 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
182breqi 5063 . . . . . 6 (𝑁𝐻𝑀𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
193, 18sylib 220 . . . . 5 (𝜑𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2019adantr 483 . . . 4 ((𝜑𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2111, 15, 17, 20brcofffn 40371 . . 3 ((𝜑𝐵 ∈ V) → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
224, 21mpdan 685 . 2 (𝜑 → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
23 simpr2 1190 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)))
24 neicvgel.x . . . . 5 (𝜑𝑋𝐵)
2524adantr 483 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑋𝐵)
26 neicvgel.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
2726adantr 483 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑆 ∈ 𝒫 𝐵)
2812, 1, 23, 25, 27ntrclselnel1 40397 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ ¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆))))
29 eqid 2819 . . . 4 (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵)
30 simpr1 1189 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑁𝐺(𝐺𝑁))
3116breqi 5063 . . . . . . 7 (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁))
3231a1i 11 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
334adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝐵 ∈ V)
34 id 22 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ V)
35 pwexg 5270 . . . . . . . . 9 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
36 eqid 2819 . . . . . . . . 9 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
375, 34, 35, 36fsovf1od 40352 . . . . . . . 8 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
3833, 37syl 17 . . . . . . 7 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
39 f1orel 6611 . . . . . . 7 ((𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → Rel (𝐵𝑂𝒫 𝐵))
40 relbrcnvg 5961 . . . . . . 7 (Rel (𝐵𝑂𝒫 𝐵) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
4138, 39, 403syl 18 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
425, 34, 35, 36, 29fsovcnvd 40350 . . . . . . . 8 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵) = (𝒫 𝐵𝑂𝐵))
4342breqd 5068 . . . . . . 7 (𝐵 ∈ V → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4433, 43syl 17 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4532, 41, 443bitr2d 309 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4630, 45mpbid 234 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁)
475, 29, 46, 25, 27ntrneiel 40421 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
48 simpr3 1191 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐷‘(𝐺𝑁))𝐹𝑀)
49 difssd 4107 . . . . . . 7 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
504, 49sselpwd 5221 . . . . . 6 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
5150adantr 483 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐵𝑆) ∈ 𝒫 𝐵)
525, 8, 48, 25, 51ntrneiel 40421 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ (𝐵𝑆) ∈ (𝑀𝑋)))
5352notbid 320 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5428, 47, 533bitr3d 311 . 2 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5522, 54mpdan 685 1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  {crab 3140  Vcvv 3493  cdif 3931  𝒫 cpw 4537   class class class wbr 5057  cmpt 5137  ccnv 5547  ccom 5552  Rel wrel 5553   Fn wfn 6343  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  cmpo 7150  m cmap 8398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-map 8400
This theorem is referenced by:  neicvgel2  40460  neicvgfv  40461
  Copyright terms: Public domain W3C validator