Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgmex Structured version   Visualization version   GIF version

Theorem neicvgmex 38732
Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgmex (𝜑𝑀 ∈ (𝒫 𝒫 𝐵𝑚 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgmex
StepHypRef Expression
1 neicvg.o . 2 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 neicvg.f . 2 𝐹 = (𝒫 𝐵𝑂𝐵)
3 neicvg.d . . . . 5 𝐷 = (𝑃𝐵)
4 neicvg.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
5 neicvg.r . . . . 5 (𝜑𝑁𝐻𝑀)
63, 4, 5neicvgbex 38727 . . . 4 (𝜑𝐵 ∈ V)
7 pwexg 4880 . . . . . . . 8 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
87adantl 481 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
9 simpr 476 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
101, 8, 9, 2fsovf1od 38627 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
11 f1ofn 6176 . . . . . 6 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → 𝐹 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
1210, 11syl 17 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
13 neicvg.p . . . . . . 7 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1413, 3, 9dssmapf1od 38632 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
15 f1of 6175 . . . . . 6 (𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
1614, 15syl 17 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
17 neicvg.g . . . . . 6 𝐺 = (𝐵𝑂𝒫 𝐵)
181, 9, 8, 17fsovfd 38623 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵𝑚 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
194breqi 4691 . . . . . . 7 (𝑁𝐻𝑀𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
205, 19sylib 208 . . . . . 6 (𝜑𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2120adantr 480 . . . . 5 ((𝜑𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2212, 16, 18, 21brcofffn 38646 . . . 4 ((𝜑𝐵 ∈ V) → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
236, 22mpdan 703 . . 3 (𝜑 → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
2423simp3d 1095 . 2 (𝜑 → (𝐷‘(𝐺𝑁))𝐹𝑀)
251, 2, 24ntrneinex 38692 1 (𝜑𝑀 ∈ (𝒫 𝒫 𝐵𝑚 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  cdif 3604  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  ccom 5147   Fn wfn 5921  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901
This theorem is referenced by:  neicvgnex  38733
  Copyright terms: Public domain W3C validator