Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgnvo Structured version   Visualization version   GIF version

Theorem neicvgnvo 40471
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgnvo (𝜑𝐻 = 𝐻)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgnvo
StepHypRef Expression
1 neicvg.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
21cnveqi 5748 . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 cnvco 5759 . . . 4 (𝐹 ∘ (𝐷𝐺)) = ((𝐷𝐺) ∘ 𝐹)
4 cnvco 5759 . . . . 5 (𝐷𝐺) = (𝐺𝐷)
54coeq1i 5733 . . . 4 ((𝐷𝐺) ∘ 𝐹) = ((𝐺𝐷) ∘ 𝐹)
62, 3, 53eqtri 2851 . . 3 𝐻 = ((𝐺𝐷) ∘ 𝐹)
7 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
8 neicvg.d . . . . . . 7 𝐷 = (𝑃𝐵)
9 neicvg.r . . . . . . 7 (𝜑𝑁𝐻𝑀)
108, 1, 9neicvgbex 40468 . . . . . 6 (𝜑𝐵 ∈ V)
1110pwexd 5283 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
12 neicvg.g . . . . . 6 𝐺 = (𝐵𝑂𝒫 𝐵)
13 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
147, 10, 11, 12, 13fsovcnvd 40366 . . . . 5 (𝜑𝐺 = 𝐹)
15 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1615, 8, 10dssmapnvod 40372 . . . . 5 (𝜑𝐷 = 𝐷)
1714, 16coeq12d 5738 . . . 4 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
187, 11, 10, 13, 12fsovcnvd 40366 . . . 4 (𝜑𝐹 = 𝐺)
1917, 18coeq12d 5738 . . 3 (𝜑 → ((𝐺𝐷) ∘ 𝐹) = ((𝐹𝐷) ∘ 𝐺))
206, 19syl5eq 2871 . 2 (𝜑𝐻 = ((𝐹𝐷) ∘ 𝐺))
21 coass 6121 . . 3 ((𝐹𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷𝐺))
2221, 1eqtr4i 2850 . 2 ((𝐹𝐷) ∘ 𝐺) = 𝐻
2320, 22syl6eq 2875 1 (𝜑𝐻 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  {crab 3145  Vcvv 3497  cdif 3936  𝒫 cpw 4542   class class class wbr 5069  cmpt 5149  ccnv 5557  ccom 5562  cfv 6358  (class class class)co 7159  cmpo 7161  m cmap 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-map 8411
This theorem is referenced by:  neicvgnvor  40472
  Copyright terms: Public domain W3C validator