Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgnvo Structured version   Visualization version   GIF version

Theorem neicvgnvo 37895
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgnvo (𝜑𝐻 = 𝐻)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgnvo
StepHypRef Expression
1 neicvg.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
21cnveqi 5257 . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 cnvco 5268 . . . 4 (𝐹 ∘ (𝐷𝐺)) = ((𝐷𝐺) ∘ 𝐹)
4 cnvco 5268 . . . . 5 (𝐷𝐺) = (𝐺𝐷)
54coeq1i 5241 . . . 4 ((𝐷𝐺) ∘ 𝐹) = ((𝐺𝐷) ∘ 𝐹)
62, 3, 53eqtri 2647 . . 3 𝐻 = ((𝐺𝐷) ∘ 𝐹)
7 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
8 neicvg.d . . . . . . 7 𝐷 = (𝑃𝐵)
9 neicvg.r . . . . . . 7 (𝜑𝑁𝐻𝑀)
108, 1, 9neicvgbex 37892 . . . . . 6 (𝜑𝐵 ∈ V)
11 pwexg 4810 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
1210, 11syl 17 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
13 neicvg.g . . . . . 6 𝐺 = (𝐵𝑂𝒫 𝐵)
14 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
157, 10, 12, 13, 14fsovcnvd 37790 . . . . 5 (𝜑𝐺 = 𝐹)
16 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1716, 8, 10dssmapnvod 37796 . . . . 5 (𝜑𝐷 = 𝐷)
1815, 17coeq12d 5246 . . . 4 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
197, 12, 10, 14, 13fsovcnvd 37790 . . . 4 (𝜑𝐹 = 𝐺)
2018, 19coeq12d 5246 . . 3 (𝜑 → ((𝐺𝐷) ∘ 𝐹) = ((𝐹𝐷) ∘ 𝐺))
216, 20syl5eq 2667 . 2 (𝜑𝐻 = ((𝐹𝐷) ∘ 𝐺))
22 coass 5613 . . 3 ((𝐹𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷𝐺))
2322, 1eqtr4i 2646 . 2 ((𝐹𝐷) ∘ 𝐺) = 𝐻
2421, 23syl6eq 2671 1 (𝜑𝐻 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  cdif 3552  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  ccnv 5073  ccom 5078  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑚 cmap 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-map 7804
This theorem is referenced by:  neicvgnvor  37896
  Copyright terms: Public domain W3C validator