MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neii2 Structured version   Visualization version   GIF version

Theorem neii2 20960
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
Assertion
Ref Expression
neii2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔

Proof of Theorem neii2
StepHypRef Expression
1 eqid 2651 . . 3 𝐽 = 𝐽
21neiss2 20953 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
31isnei 20955 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
4 simpr 476 . . . 4 ((𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
53, 4syl6bi 243 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
65impancom 455 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 𝐽 → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
72, 6mpd 15 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2030  wrex 2942  wss 3607   cuni 4468  cfv 5926  Topctop 20746  neicnei 20949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-top 20747  df-nei 20950
This theorem is referenced by:  neiss  20961  ssnei  20962  ssnei2  20968  innei  20977  opnneiid  20978  neissex  20979  cnpnei  21116  hausnei2  21205  nlly2i  21327  neitx  21458  cnextcn  21918  utopreg  22103  neibastop2  32481
  Copyright terms: Public domain W3C validator