MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neips Structured version   Visualization version   GIF version

Theorem neips 20827
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neips ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Distinct variable groups:   𝐽,𝑝   𝑁,𝑝   𝑆,𝑝   𝑋,𝑝

Proof of Theorem neips
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 4308 . . . . . 6 (𝑝𝑆 → {𝑝} ⊆ 𝑆)
2 neiss 20823 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ {𝑝} ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
31, 2syl3an3 1358 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑝𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
433exp 1261 . . . 4 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (𝑝𝑆𝑁 ∈ ((nei‘𝐽)‘{𝑝}))))
54ralrimdv 2962 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
653ad2ant1 1080 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
7 r19.28zv 4038 . . . . 5 (𝑆 ≠ ∅ → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
873ad2ant3 1082 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
9 ssrab2 3666 . . . . . . . . . 10 {𝑣𝐽𝑣𝑁} ⊆ 𝐽
10 uniopn 20627 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝐽) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
119, 10mpan2 706 . . . . . . . . 9 (𝐽 ∈ Top → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1211ad2antrr 761 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
13 sseq1 3605 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑔 → (𝑣𝑁𝑔𝑁))
1413elrab 3346 . . . . . . . . . . . . . . 15 (𝑔 ∈ {𝑣𝐽𝑣𝑁} ↔ (𝑔𝐽𝑔𝑁))
15 elunii 4407 . . . . . . . . . . . . . . 15 ((𝑝𝑔𝑔 ∈ {𝑣𝐽𝑣𝑁}) → 𝑝 {𝑣𝐽𝑣𝑁})
1614, 15sylan2br 493 . . . . . . . . . . . . . 14 ((𝑝𝑔 ∧ (𝑔𝐽𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
1716an12s 842 . . . . . . . . . . . . 13 ((𝑔𝐽 ∧ (𝑝𝑔𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
1817rexlimiva 3021 . . . . . . . . . . . 12 (∃𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑝 {𝑣𝐽𝑣𝑁})
1918ralimi 2947 . . . . . . . . . . 11 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
20 dfss3 3573 . . . . . . . . . . 11 (𝑆 {𝑣𝐽𝑣𝑁} ↔ ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
2119, 20sylibr 224 . . . . . . . . . 10 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑆 {𝑣𝐽𝑣𝑁})
2221adantl 482 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → 𝑆 {𝑣𝐽𝑣𝑁})
23 unissb 4435 . . . . . . . . . 10 ( {𝑣𝐽𝑣𝑁} ⊆ 𝑁 ↔ ∀ ∈ {𝑣𝐽𝑣𝑁}𝑁)
24 sseq1 3605 . . . . . . . . . . . 12 (𝑣 = → (𝑣𝑁𝑁))
2524elrab 3346 . . . . . . . . . . 11 ( ∈ {𝑣𝐽𝑣𝑁} ↔ (𝐽𝑁))
2625simprbi 480 . . . . . . . . . 10 ( ∈ {𝑣𝐽𝑣𝑁} → 𝑁)
2723, 26mprgbir 2922 . . . . . . . . 9 {𝑣𝐽𝑣𝑁} ⊆ 𝑁
2822, 27jctir 560 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
29 sseq2 3606 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑆𝑆 {𝑣𝐽𝑣𝑁}))
30 sseq1 3605 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑁 {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
3129, 30anbi12d 746 . . . . . . . . 9 ( = {𝑣𝐽𝑣𝑁} → ((𝑆𝑁) ↔ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)))
3231rspcev 3295 . . . . . . . 8 (( {𝑣𝐽𝑣𝑁} ∈ 𝐽 ∧ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)) → ∃𝐽 (𝑆𝑁))
3312, 28, 32syl2anc 692 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → ∃𝐽 (𝑆𝑁))
3433ex 450 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∃𝐽 (𝑆𝑁)))
3534anim2d 588 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
36353adant3 1079 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
378, 36sylbid 230 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
38 ssel2 3578 . . . . . . 7 ((𝑆𝑋𝑝𝑆) → 𝑝𝑋)
39 neips.1 . . . . . . . 8 𝑋 = 𝐽
4039isneip 20819 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4138, 40sylan2 491 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑝𝑆)) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4241anassrs 679 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑝𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4342ralbidva 2979 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
44433adant3 1079 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4539isnei 20817 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
46453adant3 1079 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
4737, 44, 463imtr4d 283 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
486, 47impbid 202 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  wss 3555  c0 3891  {csn 4148   cuni 4402  cfv 5847  Topctop 20617  neicnei 20811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-top 20621  df-nei 20812
This theorem is referenced by:  utop2nei  21964
  Copyright terms: Public domain W3C validator