MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neleq2 Structured version   Visualization version   GIF version

Theorem neleq2 2888
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
neleq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem neleq2
StepHypRef Expression
1 eqidd 2610 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2neleq12d 2886 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194   = wceq 1474  wnel 2780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695  df-cleq 2602  df-clel 2605  df-nel 2782
This theorem is referenced by:  noinfep  8417  wrdlndm  13122  isfbas  21385  nbgra0nb  25724  cusgrares  25767  frgrawopreglem4  26340  nbgrnvtx0  40565  nbupgrres  40594  eupth2lem3lem6  41403  frgrwopreglem4  41486
  Copyright terms: Public domain W3C validator