![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) |
Ref | Expression |
---|---|
nelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpcd 239 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = 𝐶 → 𝐴 ∈ 𝐶)) |
3 | 2 | necon3bd 2946 | . 2 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐶 → 𝐵 ≠ 𝐶)) |
4 | 3 | imp 444 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2753 df-clel 2756 df-ne 2933 |
This theorem is referenced by: elnelne1 3045 difsnb 4482 fofinf1o 8406 fin23lem24 9336 fin23lem31 9357 ttukeylem7 9529 npomex 10010 lbspss 19284 islbs3 19357 lbsextlem4 19363 obslbs 20276 hauspwpwf1 21992 ppiltx 25102 tglineneq 25738 lnopp2hpgb 25854 colopp 25860 ex-pss 27596 unelldsys 30530 cntnevol 30600 fin2solem 33708 lshpnelb 34774 osumcllem10N 35754 pexmidlem7N 35765 dochsnkrlem1 37260 rpnnen3lem 38100 lvecpsslmod 42806 |
Copyright terms: Public domain | W3C validator |