MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelpri Structured version   Visualization version   GIF version

Theorem nelpri 4172
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
nelpri.1 𝐴𝐵
nelpri.2 𝐴𝐶
Assertion
Ref Expression
nelpri ¬ 𝐴 ∈ {𝐵, 𝐶}

Proof of Theorem nelpri
StepHypRef Expression
1 nelpri.1 . 2 𝐴𝐵
2 nelpri.2 . 2 𝐴𝐶
3 neanior 2882 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 4168 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 150 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 207 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6mp2an 707 1 ¬ 𝐴 ∈ {𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  {cpr 4150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-v 3188  df-un 3560  df-sn 4149  df-pr 4151
This theorem is referenced by:  prneli  4173  ex-dif  27134  ex-in  27136  ex-pss  27139  ex-res  27152  ex-hash  27164
  Copyright terms: Public domain W3C validator