![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version |
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
Ref | Expression |
---|---|
neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 384 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
2 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | imbi1i 338 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 1, 3 | bitr4i 267 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 = wceq 1632 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 df-ne 2933 |
This theorem is referenced by: frsn 5346 ord0eln0 5940 fimaxre 11180 prime 11670 h1datomi 28770 elat2 29529 bnj563 31141 divrngidl 34158 dmncan1 34206 lkrshp4 34916 cvrcmp 35091 leat2 35102 isat3 35115 2llnmat 35331 2lnat 35591 |
Copyright terms: Public domain | W3C validator |