![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf3orOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nf3or 1980 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfOLD.1 | ⊢ Ⅎ𝑥𝜑 |
nfOLD.2 | ⊢ Ⅎ𝑥𝜓 |
nfOLD.3 | ⊢ Ⅎ𝑥𝜒 |
Ref | Expression |
---|---|
nf3orOLD | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓 ∨ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 1073 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | nfOLD.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | nfOLD.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nforOLD 2385 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
5 | nfOLD.3 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | 4, 5 | nforOLD 2385 | . 2 ⊢ Ⅎ𝑥((𝜑 ∨ 𝜓) ∨ 𝜒) |
7 | 1, 6 | nfxfrOLD 1982 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓 ∨ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 ∨ w3o 1071 ℲwnfOLD 1854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-10 2164 ax-12 2192 |
This theorem depends on definitions: df-bi 197 df-or 384 df-3or 1073 df-ex 1850 df-nf 1855 df-nfOLD 1866 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |