![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5rd | Structured version Visualization version GIF version |
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf5rd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nf5rd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5rd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nf5r 2102 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-ex 1745 df-nf 1750 |
This theorem is referenced by: alrimdd 2121 nf5di 2157 hbimd 2164 hbnt 2182 nfaldOLD 2202 dvelimhw 2209 spimed 2291 cbv2 2306 dveeq2 2334 dveeq1 2336 axc9 2338 dvelimh 2367 abidnf 3408 eusvnfb 4892 axrepnd 9454 axacndlem4 9470 bj-spimedv 32844 bj-cbv2v 32857 wl-nfeqfb 33453 |
Copyright terms: Public domain | W3C validator |