MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa1OLDOLD Structured version   Visualization version   GIF version

Theorem nfa1OLDOLD 2206
Description: Obsolete proof of nfa1 2025 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1OLDOLD 𝑥𝑥𝜑

Proof of Theorem nfa1OLDOLD
StepHypRef Expression
1 hba1 2148 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21nfiOLD 1731 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1478  wnfOLD 1706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1702  df-nf 1707  df-nfOLD 1718
This theorem is referenced by:  nfnf1OLDOLD  2207
  Copyright terms: Public domain W3C validator