MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa2OLD Structured version   Visualization version   GIF version

Theorem nfa2OLD 2309
Description: Obsolete proof of nfa2 2185 as of 18-Oct-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa2OLD 𝑥𝑦𝑥𝜑

Proof of Theorem nfa2OLD
StepHypRef Expression
1 nfa1 2173 . 2 𝑥𝑥𝜑
21nfal 2296 1 𝑥𝑦𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1626  wnf 1853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-10 2164  ax-11 2179  ax-12 2192
This theorem depends on definitions:  df-bi 197  df-or 384  df-ex 1850  df-nf 1855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator