MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1 Structured version   Visualization version   GIF version

Theorem nfaba1 2908
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1 𝑥{𝑦 ∣ ∀𝑥𝜑}

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 2177 . 2 𝑥𝑥𝜑
21nfab 2907 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1630  {cab 2746  wnfc 2889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-nfc 2891
This theorem is referenced by:  nfopd  4570  nfimad  5633  nfiota1  6014  nffvd  6362  nfunidALT2  34777  nfunidALT  34778  nfopdALT  34779  setrec1  42966
  Copyright terms: Public domain W3C validator