MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1 Structured version   Visualization version   GIF version

Theorem nfaba1 2755
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1 𝑥{𝑦 ∣ ∀𝑥𝜑}

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 2014 . 2 𝑥𝑥𝜑
21nfab 2754 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1472  {cab 2595  wnfc 2737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-nfc 2739
This theorem is referenced by:  nfopd  4351  nfimad  5381  nfiota1  5756  nffvd  6097  nfunidALT2  33070  nfunidALT  33071  nfopdALT  33072
  Copyright terms: Public domain W3C validator