MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Structured version   Visualization version   GIF version

Theorem nfcrii 2648
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcri.1 . . . 4 𝑥𝐴
2 nfcr 2647 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
31, 2ax-mp 5 . . 3 𝑥 𝑧𝐴
43nfri 2005 . 2 (𝑧𝐴 → ∀𝑥 𝑧𝐴)
54hblem 2622 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1472  wnf 1698  wcel 1938  wnfc 2642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ex 1695  df-nf 1699  df-sb 1831  df-cleq 2507  df-clel 2510  df-nfc 2644
This theorem is referenced by:  nfcri  2649  cleqf  2680  abeq2f  2682  bnj1230  29976  bnj1000  30114  bnj1204  30183  bnj1307  30194  bnj1311  30195  bnj1398  30205  bnj1466  30224  bnj1467  30225  bnj1523  30242
  Copyright terms: Public domain W3C validator