MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvb Structured version   Visualization version   GIF version

Theorem nfcvb 5280
Description: The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of in the obvious way. This theorem is not true in a one-element domain, because then 𝑥𝑦 and 𝑥𝑥 = 𝑦 will both be true. Usage of this theorem is discouraged because it depends on ax-13 2389. (Contributed by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvb (𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem nfcvb
StepHypRef Expression
1 nfnid 5279 . . . 4 ¬ 𝑦𝑦
2 eqidd 2825 . . . . 5 (∀𝑥 𝑥 = 𝑦𝑦 = 𝑦)
32drnfc1 3000 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
41, 3mtbiri 329 . . 3 (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦)
54con2i 141 . 2 (𝑥𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
6 nfcvf 3010 . 2 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
75, 6impbii 211 1 (𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wal 1534  wnfc 2964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-13 2389  ax-ext 2796  ax-nul 5213  ax-pow 5269
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-cleq 2817  df-clel 2896  df-nfc 2966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator