MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdiOLD Structured version   Visualization version   GIF version

Theorem nfdiOLD 2370
Description: Obsolete proof of nf5di 2266 as of 6-Oct-2021. (Contributed by NM, 17-Aug-2018.) (Proof shortened by Wolf Lammen, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfdiOLD.1 (𝜑 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
nfdiOLD 𝑥𝜑

Proof of Theorem nfdiOLD
StepHypRef Expression
1 nfdiOLD.1 . . . 4 (𝜑 → Ⅎ𝑥𝜑)
21nfrdOLD 2335 . . 3 (𝜑 → (𝜑 → ∀𝑥𝜑))
32pm2.43i 52 . 2 (𝜑 → ∀𝑥𝜑)
43nfiOLD 1883 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1630  wnfOLD 1858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-12 2196
This theorem depends on definitions:  df-bi 197  df-ex 1854  df-nfOLD 1870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator