MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffvd Structured version   Visualization version   GIF version

Theorem nffvd 6238
Description: Deduction version of bound-variable hypothesis builder nffv 6236. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffvd.2 (𝜑𝑥𝐹)
nffvd.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nffvd (𝜑𝑥(𝐹𝐴))

Proof of Theorem nffvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2799 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐹}
2 nfaba1 2799 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
31, 2nffv 6236 . 2 𝑥({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴})
4 nffvd.2 . . 3 (𝜑𝑥𝐹)
5 nffvd.3 . . 3 (𝜑𝑥𝐴)
6 nfnfc1 2796 . . . . 5 𝑥𝑥𝐹
7 nfnfc1 2796 . . . . 5 𝑥𝑥𝐴
86, 7nfan 1868 . . . 4 𝑥(𝑥𝐹𝑥𝐴)
9 abidnf 3408 . . . . . 6 (𝑥𝐹 → {𝑧 ∣ ∀𝑥 𝑧𝐹} = 𝐹)
109adantr 480 . . . . 5 ((𝑥𝐹𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧𝐹} = 𝐹)
11 abidnf 3408 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
1211adantl 481 . . . . 5 ((𝑥𝐹𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
1310, 12fveq12d 6235 . . . 4 ((𝑥𝐹𝑥𝐴) → ({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴}) = (𝐹𝐴))
148, 13nfceqdf 2789 . . 3 ((𝑥𝐹𝑥𝐴) → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴}) ↔ 𝑥(𝐹𝐴)))
154, 5, 14syl2anc 694 . 2 (𝜑 → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴}) ↔ 𝑥(𝐹𝐴)))
163, 15mpbii 223 1 (𝜑𝑥(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  {cab 2637  wnfc 2780  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934
This theorem is referenced by:  nfovd  6715  nfixp  7969
  Copyright terms: Public domain W3C validator