Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimad Structured version   Visualization version   GIF version

 Description: Deduction version of bound-variable hypothesis builder nfima 5433. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
Assertion
Ref Expression

Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2766 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
2 nfaba1 2766 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
31, 2nfima 5433 . 2 𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵})
4 nfimad.2 . . 3 (𝜑𝑥𝐴)
5 nfimad.3 . . 3 (𝜑𝑥𝐵)
6 nfnfc1 2764 . . . . 5 𝑥𝑥𝐴
7 nfnfc1 2764 . . . . 5 𝑥𝑥𝐵
86, 7nfan 1825 . . . 4 𝑥(𝑥𝐴𝑥𝐵)
9 abidnf 3357 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
109imaeq1d 5424 . . . . 5 (𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧𝐵}))
11 abidnf 3357 . . . . . 6 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1211imaeq2d 5425 . . . . 5 (𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴𝐵))
1310, 12sylan9eq 2675 . . . 4 ((𝑥𝐴𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴𝐵))
148, 13nfceqdf 2757 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) ↔ 𝑥(𝐴𝐵)))
154, 5, 14syl2anc 692 . 2 (𝜑 → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) ↔ 𝑥(𝐴𝐵)))
163, 15mpbii 223 1 (𝜑𝑥(𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478   ∈ wcel 1987  {cab 2607  Ⅎwnfc 2748   “ cima 5077 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator