![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfimdOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nfimd 1863 as of 6-Oct-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfimdOLD.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfimdOLD.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfimdOLD | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfimdOLD.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfimdOLD.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
3 | nfnf1OLDOLD 2244 | . . . 4 ⊢ Ⅎ𝑥Ⅎ𝑥𝜓 | |
4 | nfnf1OLDOLD 2244 | . . . 4 ⊢ Ⅎ𝑥Ⅎ𝑥𝜒 | |
5 | nfrOLD 2224 | . . . . . 6 ⊢ (Ⅎ𝑥𝜒 → (𝜒 → ∀𝑥𝜒)) | |
6 | 5 | imim2d 57 | . . . . 5 ⊢ (Ⅎ𝑥𝜒 → ((𝜓 → 𝜒) → (𝜓 → ∀𝑥𝜒))) |
7 | 19.21tOLD 2249 | . . . . . 6 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → 𝜒) ↔ (𝜓 → ∀𝑥𝜒))) | |
8 | 7 | biimprd 238 | . . . . 5 ⊢ (Ⅎ𝑥𝜓 → ((𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓 → 𝜒))) |
9 | 6, 8 | syl9r 78 | . . . 4 ⊢ (Ⅎ𝑥𝜓 → (Ⅎ𝑥𝜒 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒)))) |
10 | 3, 4, 9 | alrimdOLD 2232 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (Ⅎ𝑥𝜒 → ∀𝑥((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒)))) |
11 | df-nfOLD 1761 | . . 3 ⊢ (Ⅎ𝑥(𝜓 → 𝜒) ↔ ∀𝑥((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) | |
12 | 10, 11 | syl6ibr 242 | . 2 ⊢ (Ⅎ𝑥𝜓 → (Ⅎ𝑥𝜒 → Ⅎ𝑥(𝜓 → 𝜒))) |
13 | 1, 2, 12 | sylc 65 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 ℲwnfOLD 1749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-or 384 df-ex 1745 df-nf 1750 df-nfOLD 1761 |
This theorem is referenced by: hbimdOLD 2266 nfandOLD 2268 nfbidOLD 2278 |
Copyright terms: Public domain | W3C validator |