MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiso Structured version   Visualization version   GIF version

Theorem nfiso 6736
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfiso.1 𝑥𝐻
nfiso.2 𝑥𝑅
nfiso.3 𝑥𝑆
nfiso.4 𝑥𝐴
nfiso.5 𝑥𝐵
Assertion
Ref Expression
nfiso 𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)

Proof of Theorem nfiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 6058 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))))
2 nfiso.1 . . . 4 𝑥𝐻
3 nfiso.4 . . . 4 𝑥𝐴
4 nfiso.5 . . . 4 𝑥𝐵
52, 3, 4nff1o 6297 . . 3 𝑥 𝐻:𝐴1-1-onto𝐵
6 nfcv 2902 . . . . . . 7 𝑥𝑦
7 nfiso.2 . . . . . . 7 𝑥𝑅
8 nfcv 2902 . . . . . . 7 𝑥𝑧
96, 7, 8nfbr 4851 . . . . . 6 𝑥 𝑦𝑅𝑧
102, 6nffv 6360 . . . . . . 7 𝑥(𝐻𝑦)
11 nfiso.3 . . . . . . 7 𝑥𝑆
122, 8nffv 6360 . . . . . . 7 𝑥(𝐻𝑧)
1310, 11, 12nfbr 4851 . . . . . 6 𝑥(𝐻𝑦)𝑆(𝐻𝑧)
149, 13nfbi 1982 . . . . 5 𝑥(𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))
153, 14nfral 3083 . . . 4 𝑥𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))
163, 15nfral 3083 . . 3 𝑥𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))
175, 16nfan 1977 . 2 𝑥(𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧)))
181, 17nfxfr 1928 1 𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wnf 1857  wnfc 2889  wral 3050   class class class wbr 4804  1-1-ontowf1o 6048  cfv 6049   Isom wiso 6050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator