MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmo Structured version   Visualization version   GIF version

Theorem nfmo 2491
Description: Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfmo 𝑥∃*𝑦𝜑

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1727 . . 3 𝑦
2 nfeu.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmod 2489 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54trud 1490 1 𝑥∃*𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1481  wnf 1705  ∃*wmo 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-eu 2478  df-mo 2479
This theorem is referenced by:  mo3  2511  moexex  2545  2moex  2547  2euex  2548  2mo  2555  reusv1  4831  reusv1OLD  4832  reusv2lem1  4833  mosubopt  4937  dffun6f  5864
  Copyright terms: Public domain W3C validator