MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2026
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2031 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2025 . 2 𝑥𝑥𝜑
21nfn 1781 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1478  wnf 1705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-10 2016
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1702  df-nf 1707
This theorem is referenced by:  dvelimhw  2170  nfeqf  2300  equs5  2350  nfsb2  2359  wl-equsb3  32966  wl-sbcom2d-lem1  32971  wl-ax11-lem3  32993  wl-ax11-lem4  32994  wl-ax11-lem6  32996  wl-ax11-lem7  32997
  Copyright terms: Public domain W3C validator