![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnanOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nfnan 1870 as of 6-Oct-2021. (Contributed by Scott Fenton, 2-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfanOLDOLD.1 | ⊢ Ⅎ𝑥𝜑 |
nfanOLDOLD.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfnanOLD | ⊢ Ⅎ𝑥(𝜑 ⊼ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan 1488 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
2 | nfanOLDOLD.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | nfanOLDOLD.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfanOLDOLD 2273 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
5 | 4 | nfnOLD 2246 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 ∧ 𝜓) |
6 | 1, 5 | nfxfrOLD 1877 | 1 ⊢ Ⅎ𝑥(𝜑 ⊼ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 ⊼ wnan 1487 ℲwnfOLD 1749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-nan 1488 df-ex 1745 df-nf 1750 df-nfOLD 1761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |