![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfndOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nfnd 1825 as of 6-Oct-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfndOLD.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfndOLD | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfndOLD.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfntOLD 2245 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ℲwnfOLD 1749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-or 384 df-ex 1745 df-nf 1750 df-nfOLD 1761 |
This theorem is referenced by: nfandOLD 2268 |
Copyright terms: Public domain | W3C validator |