MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnegd Structured version   Visualization version   GIF version

Theorem nfnegd 10127
Description: Deduction version of nfneg 10128. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfnegd (𝜑𝑥-𝐴)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 10120 . 2 -𝐴 = (0 − 𝐴)
2 nfcvd 2751 . . 3 (𝜑𝑥0)
3 nfcvd 2751 . . 3 (𝜑𝑥 − )
4 nfnegd.1 . . 3 (𝜑𝑥𝐴)
52, 3, 4nfovd 6552 . 2 (𝜑𝑥(0 − 𝐴))
61, 5nfcxfrd 2749 1 (𝜑𝑥-𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnfc 2737  (class class class)co 6527  0cc0 9792  cmin 10117  -cneg 10118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-neg 10120
This theorem is referenced by:  nfneg  10128
  Copyright terms: Public domain W3C validator