MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc Structured version   Visualization version   GIF version

Theorem nfnfc 2770
Description: Hypothesis builder for 𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 2245. (Revised by Wolf Lammen, 10-Dec-2019.)
Hypothesis
Ref Expression
nfnfc.1 𝑥𝐴
Assertion
Ref Expression
nfnfc 𝑥𝑦𝐴

Proof of Theorem nfnfc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2750 . 2 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2 nfnfc.1 . . . . 5 𝑥𝐴
3 nfcr 2753 . . . . 5 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
42, 3ax-mp 5 . . . 4 𝑥 𝑧𝐴
54nfnf 2155 . . 3 𝑥𝑦 𝑧𝐴
65nfal 2150 . 2 𝑥𝑧𝑦 𝑧𝐴
71, 6nfxfr 1776 1 𝑥𝑦𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1478  wnf 1705  wcel 1987  wnfc 2748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-nfc 2750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator