![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfntOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nfnt 1822 as of 3-Nov-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) df-nf 1750 changed. (Revised by Wolf Lammen, 4-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfntOLDOLD | ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 136 | . . . . 5 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | 1 | alimi 1779 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑) |
3 | 2 | orim1i 538 | . . 3 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → (∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
4 | pm1.4 400 | . . 3 ⊢ ((∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑) → (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) |
6 | nf3 1752 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
7 | nf3 1752 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
8 | 5, 6, 7 | 3imtr4i 281 | 1 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∀wal 1521 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-or 384 df-ex 1745 df-nf 1750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |