Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpr Structured version   Visualization version   GIF version

Theorem nfpr 4264
 Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfpr.1 𝑥𝐴
nfpr.2 𝑥𝐵
Assertion
Ref Expression
nfpr 𝑥{𝐴, 𝐵}

Proof of Theorem nfpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfpr2 4228 . 2 {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
2 nfpr.1 . . . . 5 𝑥𝐴
32nfeq2 2809 . . . 4 𝑥 𝑦 = 𝐴
4 nfpr.2 . . . . 5 𝑥𝐵
54nfeq2 2809 . . . 4 𝑥 𝑦 = 𝐵
63, 5nfor 1874 . . 3 𝑥(𝑦 = 𝐴𝑦 = 𝐵)
76nfab 2798 . 2 𝑥{𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
81, 7nfcxfr 2791 1 𝑥{𝐴, 𝐵}
 Colors of variables: wff setvar class Syntax hints:   ∨ wo 382   = wceq 1523  {cab 2637  Ⅎwnfc 2780  {cpr 4212 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-un 3612  df-sn 4211  df-pr 4213 This theorem is referenced by:  nfsn  4274  nfop  4449  nfaltop  32212
 Copyright terms: Public domain W3C validator