Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbc1 Structured version   Visualization version   GIF version

Theorem nfsbc1 3452
 Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1.1 𝑥𝐴
Assertion
Ref Expression
nfsbc1 𝑥[𝐴 / 𝑥]𝜑

Proof of Theorem nfsbc1
StepHypRef Expression
1 nfsbc1.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfsbc1d 3451 . 2 (⊤ → Ⅎ𝑥[𝐴 / 𝑥]𝜑)
43trud 1492 1 𝑥[𝐴 / 𝑥]𝜑
 Colors of variables: wff setvar class Syntax hints:  ⊤wtru 1483  Ⅎwnf 1707  Ⅎwnfc 2750  [wsbc 3433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-sbc 3434 This theorem is referenced by:  nfsbc1v  3453  riotass2  6635  riotass  6636  uzwo4  39047
 Copyright terms: Public domain W3C validator