MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsymdif Structured version   Visualization version   GIF version

Theorem nfsymdif 3840
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
nfsymdif.1 𝑥𝐴
nfsymdif.2 𝑥𝐵
Assertion
Ref Expression
nfsymdif 𝑥(𝐴𝐵)

Proof of Theorem nfsymdif
StepHypRef Expression
1 df-symdif 3836 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
2 nfsymdif.1 . . . 4 𝑥𝐴
3 nfsymdif.2 . . . 4 𝑥𝐵
42, 3nfdif 3723 . . 3 𝑥(𝐴𝐵)
53, 2nfdif 3723 . . 3 𝑥(𝐵𝐴)
64, 5nfun 3761 . 2 𝑥((𝐴𝐵) ∪ (𝐵𝐴))
71, 6nfcxfr 2760 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2749  cdif 3564  cun 3565  csymdif 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-rab 2918  df-dif 3570  df-un 3572  df-symdif 3836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator