![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfvres | Structured version Visualization version GIF version |
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
nfvres | ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5454 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
2 | inss1 3866 | . . . . 5 ⊢ (𝐵 ∩ dom 𝐹) ⊆ 𝐵 | |
3 | 1, 2 | eqsstri 3668 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) ⊆ 𝐵 |
4 | 3 | sseli 3632 | . . 3 ⊢ (𝐴 ∈ dom (𝐹 ↾ 𝐵) → 𝐴 ∈ 𝐵) |
5 | 4 | con3i 150 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ dom (𝐹 ↾ 𝐵)) |
6 | ndmfv 6256 | . 2 ⊢ (¬ 𝐴 ∈ dom (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
7 | 5, 6 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ∅c0 3948 dom cdm 5143 ↾ cres 5145 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-dm 5153 df-res 5155 df-iota 5889 df-fv 5934 |
This theorem is referenced by: fveqres 6268 fvresval 31791 trpredlem1 31851 funpartfv 32177 |
Copyright terms: Public domain | W3C validator |