MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nglmle Structured version   Visualization version   GIF version

Theorem nglmle 23008
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
nglmle.1 𝑋 = (Base‘𝐺)
nglmle.2 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
nglmle.3 𝐽 = (MetOpen‘𝐷)
nglmle.5 𝑁 = (norm‘𝐺)
nglmle.6 (𝜑𝐺 ∈ NrmGrp)
nglmle.7 (𝜑𝐹:ℕ⟶𝑋)
nglmle.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
nglmle.9 (𝜑𝑅 ∈ ℝ*)
nglmle.10 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
nglmle (𝜑 → (𝑁𝑃) ≤ 𝑅)
Distinct variable groups:   𝑘,𝐹   𝐷,𝑘   𝑘,𝐺   𝑘,𝐽   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝑁(𝑘)

Proof of Theorem nglmle
StepHypRef Expression
1 nglmle.6 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
2 ngpgrp 22313 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 ngpms 22314 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
51, 4syl 17 . . . . . . . 8 (𝜑𝐺 ∈ MetSp)
6 msxms 22169 . . . . . . . 8 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
75, 6syl 17 . . . . . . 7 (𝜑𝐺 ∈ ∞MetSp)
8 nglmle.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
9 nglmle.2 . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
108, 9xmsxmet 22171 . . . . . . 7 (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
117, 10syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
12 nglmle.3 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1312mopntopon 22154 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 nglmle.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
16 lmcl 21011 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
1714, 15, 16syl2anc 692 . . . 4 (𝜑𝑃𝑋)
18 nglmle.5 . . . . 5 𝑁 = (norm‘𝐺)
19 eqid 2621 . . . . 5 (0g𝐺) = (0g𝐺)
20 eqid 2621 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
2118, 8, 19, 20, 9nmval2 22306 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃𝑋) → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
223, 17, 21syl2anc 692 . . 3 (𝜑 → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
238, 19grpidcl 17371 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
243, 23syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝑋)
25 xmetsym 22062 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (0g𝐺) ∈ 𝑋) → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2611, 17, 24, 25syl3anc 1323 . . 3 (𝜑 → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2722, 26eqtrd 2655 . 2 (𝜑 → (𝑁𝑃) = ((0g𝐺)𝐷𝑃))
28 nnuz 11667 . . 3 ℕ = (ℤ‘1)
29 1zzd 11352 . . 3 (𝜑 → 1 ∈ ℤ)
30 nglmle.9 . . 3 (𝜑𝑅 ∈ ℝ*)
313adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 ∈ Grp)
32 nglmle.7 . . . . . . 7 (𝜑𝐹:ℕ⟶𝑋)
3332ffvelrnda 6315 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
3418, 8, 19, 20, 9nmval2 22306 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝑋) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3531, 33, 34syl2anc 692 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3611adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
3724adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (0g𝐺) ∈ 𝑋)
38 xmetsym 22062 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (0g𝐺) ∈ 𝑋) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
3936, 33, 37, 38syl3anc 1323 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
4035, 39eqtrd 2655 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((0g𝐺)𝐷(𝐹𝑘)))
41 nglmle.10 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
4240, 41eqbrtrrd 4637 . . 3 ((𝜑𝑘 ∈ ℕ) → ((0g𝐺)𝐷(𝐹𝑘)) ≤ 𝑅)
4328, 12, 11, 29, 15, 24, 30, 42lmle 23007 . 2 (𝜑 → ((0g𝐺)𝐷𝑃) ≤ 𝑅)
4427, 43eqbrtrd 4635 1 (𝜑 → (𝑁𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613   × cxp 5072  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  1c1 9881  *cxr 10017  cle 10019  cn 10964  Basecbs 15781  distcds 15871  0gc0g 16021  Grpcgrp 17343  ∞Metcxmt 19650  MetOpencmopn 19655  TopOnctopon 20618  𝑡clm 20940  ∞MetSpcxme 22032  MetSpcmt 22033  normcnm 22291  NrmGrpcngp 22292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-0g 16023  df-topgen 16025  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-psmet 19657  df-xmet 19658  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-lm 20943  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator