MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpds Structured version   Visualization version   GIF version

Theorem ngpds 22455
Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ngpds.n 𝑁 = (norm‘𝐺)
ngpds.x 𝑋 = (Base‘𝐺)
ngpds.m = (-g𝐺)
ngpds.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngpds ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 𝐵)))

Proof of Theorem ngpds
StepHypRef Expression
1 ngpds.n . . . . . 6 𝑁 = (norm‘𝐺)
2 ngpds.m . . . . . 6 = (-g𝐺)
3 ngpds.d . . . . . 6 𝐷 = (dist‘𝐺)
4 ngpds.x . . . . . 6 𝑋 = (Base‘𝐺)
5 eqid 2651 . . . . . 6 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋))
61, 2, 3, 4, 5isngp2 22448 . . . . 5 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))))
76simp3bi 1098 . . . 4 (𝐺 ∈ NrmGrp → (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)))
873ad2ant1 1102 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)))
98oveqd 6707 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(𝑁 )𝐵) = (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵))
10 ngpgrp 22450 . . . . . 6 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
114, 2grpsubf 17541 . . . . . 6 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1210, 11syl 17 . . . . 5 (𝐺 ∈ NrmGrp → :(𝑋 × 𝑋)⟶𝑋)
13123ad2ant1 1102 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → :(𝑋 × 𝑋)⟶𝑋)
14 opelxpi 5182 . . . . 5 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
15143adant1 1099 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
16 fvco3 6314 . . . 4 (( :(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 )‘⟨𝐴, 𝐵⟩) = (𝑁‘( ‘⟨𝐴, 𝐵⟩)))
1713, 15, 16syl2anc 694 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁 )‘⟨𝐴, 𝐵⟩) = (𝑁‘( ‘⟨𝐴, 𝐵⟩)))
18 df-ov 6693 . . 3 (𝐴(𝑁 )𝐵) = ((𝑁 )‘⟨𝐴, 𝐵⟩)
19 df-ov 6693 . . . 4 (𝐴 𝐵) = ( ‘⟨𝐴, 𝐵⟩)
2019fveq2i 6232 . . 3 (𝑁‘(𝐴 𝐵)) = (𝑁‘( ‘⟨𝐴, 𝐵⟩))
2117, 18, 203eqtr4g 2710 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(𝑁 )𝐵) = (𝑁‘(𝐴 𝐵)))
22 ovres 6842 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
23223adant1 1099 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
249, 21, 233eqtr3rd 2694 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  cop 4216   × cxp 5141  cres 5145  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  Basecbs 15904  distcds 15997  Grpcgrp 17469  -gcsg 17471  MetSpcmt 22170  normcnm 22428  NrmGrpcngp 22429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-0g 16149  df-topgen 16151  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-xms 22172  df-ms 22173  df-nm 22434  df-ngp 22435
This theorem is referenced by:  ngpdsr  22456  ngpds2  22457  ngprcan  22461  ngpinvds  22464  nmmtri  22473  nmrtri  22475  subgngp  22486  nrgdsdi  22516  nrgdsdir  22517  nlmdsdi  22532  nlmdsdir  22533  nrginvrcnlem  22542  nmods  22595  ncvspds  23007  ipcnlem2  23089  minveclem2  23243  minveclem3b  23245  minveclem4  23249  minveclem6  23251
  Copyright terms: Public domain W3C validator