![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpinvds | Structured version Visualization version GIF version |
Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
ngpinvds.x | ⊢ 𝑋 = (Base‘𝐺) |
ngpinvds.i | ⊢ 𝐼 = (invg‘𝐺) |
ngpinvds.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
ngpinvds | ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpinvds.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2651 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | ngpinvds.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
4 | simplr 807 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Abel) | |
5 | simprr 811 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
6 | simprl 809 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | ablsub2inv 18262 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)) = (𝐴(-g‘𝐺)𝐵)) |
8 | 7 | fveq2d 6233 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴))) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
9 | simpll 805 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) | |
10 | ngpgrp 22450 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Grp) |
12 | 1, 3 | grpinvcl 17514 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
13 | 11, 6, 12 | syl2anc 694 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐼‘𝐴) ∈ 𝑋) |
14 | 1, 3 | grpinvcl 17514 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋) → (𝐼‘𝐵) ∈ 𝑋) |
15 | 11, 5, 14 | syl2anc 694 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐼‘𝐵) ∈ 𝑋) |
16 | eqid 2651 | . . . 4 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
17 | ngpinvds.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
18 | 16, 1, 2, 17 | ngpdsr 22456 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐼‘𝐴) ∈ 𝑋 ∧ (𝐼‘𝐵) ∈ 𝑋) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)))) |
19 | 9, 13, 15, 18 | syl3anc 1366 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)))) |
20 | 16, 1, 2, 17 | ngpds 22455 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
21 | 9, 6, 5, 20 | syl3anc 1366 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
22 | 8, 19, 21 | 3eqtr4d 2695 | 1 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 distcds 15997 Grpcgrp 17469 invgcminusg 17470 -gcsg 17471 Abelcabl 18240 normcnm 22428 NrmGrpcngp 22429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-0g 16149 df-topgen 16151 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-cmn 18241 df-abl 18242 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-xms 22172 df-ms 22173 df-nm 22434 df-ngp 22435 |
This theorem is referenced by: ngptgp 22487 |
Copyright terms: Public domain | W3C validator |