MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpocelbl Structured version   Visualization version   GIF version

Theorem ngpocelbl 23315
Description: Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007.) (Revised by AV, 14-Oct-2021.)
Hypotheses
Ref Expression
ngpocelbl.n 𝑁 = (norm‘𝐺)
ngpocelbl.x 𝑋 = (Base‘𝐺)
ngpocelbl.p + = (+g𝐺)
ngpocelbl.d 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
ngpocelbl ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))

Proof of Theorem ngpocelbl
StepHypRef Expression
1 nlmngp 23288 . . . . . . 7 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
2 ngpocelbl.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 ngpocelbl.d . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
42, 3ngpmet 23214 . . . . . . 7 (𝐺 ∈ NrmGrp → 𝐷 ∈ (Met‘𝑋))
5 metxmet 22946 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
61, 4, 53syl 18 . . . . . 6 (𝐺 ∈ NrmMod → 𝐷 ∈ (∞Met‘𝑋))
76anim1i 616 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
873adant3 1128 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
9 simp3l 1197 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝑃𝑋)
10 ngpgrp 23210 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
111, 10syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Grp)
12113ad2ant1 1129 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Grp)
13 simp3 1134 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋𝐴𝑋))
14 3anass 1091 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Grp ∧ (𝑃𝑋𝐴𝑋)))
1512, 13, 14sylanbrc 585 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋))
16 ngpocelbl.p . . . . . . 7 + = (+g𝐺)
172, 16grpcl 18113 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) → (𝑃 + 𝐴) ∈ 𝑋)
1815, 17syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃 + 𝐴) ∈ 𝑋)
199, 18jca 514 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋))
208, 19jca 514 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)))
21 elbl2 23002 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
2220, 21syl 17 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
233oveqi 7171 . . . . . 6 (𝑃𝐷(𝑃 + 𝐴)) = (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴))
24 ovres 7316 . . . . . 6 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2523, 24syl5eq 2870 . . . . 5 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2619, 25syl 17 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2713ad2ant1 1129 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ NrmGrp)
28 ngpocelbl.n . . . . . 6 𝑁 = (norm‘𝐺)
29 eqid 2823 . . . . . 6 (-g𝐺) = (-g𝐺)
30 eqid 2823 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
3128, 2, 29, 30ngpdsr 23216 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
3227, 9, 18, 31syl3anc 1367 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
33 nlmlmod 23289 . . . . . . . . 9 (𝐺 ∈ NrmMod → 𝐺 ∈ LMod)
34 lmodabl 19683 . . . . . . . . 9 (𝐺 ∈ LMod → 𝐺 ∈ Abel)
3533, 34syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Abel)
36353ad2ant1 1129 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Abel)
37 3anass 1091 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Abel ∧ (𝑃𝑋𝐴𝑋)))
3836, 13, 37sylanbrc 585 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋))
392, 16, 29ablpncan2 18938 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4038, 39syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4140fveq2d 6676 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)) = (𝑁𝐴))
4226, 32, 413eqtrd 2862 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑁𝐴))
4342breq1d 5078 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃𝐷(𝑃 + 𝐴)) < 𝑅 ↔ (𝑁𝐴) < 𝑅))
4422, 43bitrd 281 1 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068   × cxp 5555  cres 5559  cfv 6357  (class class class)co 7158  *cxr 10676   < clt 10677  Basecbs 16485  +gcplusg 16567  distcds 16576  Grpcgrp 18105  -gcsg 18107  Abelcabl 18909  LModclmod 19636  ∞Metcxmet 20532  Metcmet 20533  ballcbl 20534  normcnm 23188  NrmGrpcngp 23189  NrmModcnlm 23192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-topgen 16719  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-xms 22932  df-ms 22933  df-nm 23194  df-ngp 23195  df-nlm 23198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator