Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngprcan Structured version   Visualization version   GIF version

Theorem ngprcan 22327
 Description: Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x 𝑋 = (Base‘𝐺)
ngprcan.p + = (+g𝐺)
ngprcan.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngprcan ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = (𝐴𝐷𝐵))

Proof of Theorem ngprcan
StepHypRef Expression
1 ngpgrp 22316 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 ngprcan.x . . . . 5 𝑋 = (Base‘𝐺)
3 ngprcan.p . . . . 5 + = (+g𝐺)
4 eqid 2621 . . . . 5 (-g𝐺) = (-g𝐺)
52, 3, 4grppnpcan2 17433 . . . 4 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶)) = (𝐴(-g𝐺)𝐵))
61, 5sylan 488 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶)) = (𝐴(-g𝐺)𝐵))
76fveq2d 6154 . 2 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((norm‘𝐺)‘((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶))) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
8 simpl 473 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ NrmGrp)
91adantr 481 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ Grp)
10 simpr1 1065 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
11 simpr3 1067 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
122, 3grpcl 17354 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴 + 𝐶) ∈ 𝑋)
139, 10, 11, 12syl3anc 1323 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 + 𝐶) ∈ 𝑋)
14 simpr2 1066 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
152, 3grpcl 17354 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
169, 14, 11, 15syl3anc 1323 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵 + 𝐶) ∈ 𝑋)
17 eqid 2621 . . . 4 (norm‘𝐺) = (norm‘𝐺)
18 ngprcan.d . . . 4 𝐷 = (dist‘𝐺)
1917, 2, 4, 18ngpds 22321 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝐶) ∈ 𝑋) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = ((norm‘𝐺)‘((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶))))
208, 13, 16, 19syl3anc 1323 . 2 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = ((norm‘𝐺)‘((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶))))
2117, 2, 4, 18ngpds 22321 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
228, 10, 14, 21syl3anc 1323 . 2 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
237, 20, 223eqtr4d 2665 1 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = (𝐴𝐷𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ‘cfv 5849  (class class class)co 6607  Basecbs 15784  +gcplusg 15865  distcds 15874  Grpcgrp 17346  -gcsg 17348  normcnm 22294  NrmGrpcngp 22295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-n0 11240  df-z 11325  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-0g 16026  df-topgen 16028  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-grp 17349  df-minusg 17350  df-sbg 17351  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-xms 22038  df-ms 22039  df-nm 22300  df-ngp 22301 This theorem is referenced by:  ngplcan  22328  isngp4  22329  ngpsubcan  22331
 Copyright terms: Public domain W3C validator