MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngprcan Structured version   Visualization version   GIF version

Theorem ngprcan 23221
Description: Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x 𝑋 = (Base‘𝐺)
ngprcan.p + = (+g𝐺)
ngprcan.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngprcan ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = (𝐴𝐷𝐵))

Proof of Theorem ngprcan
StepHypRef Expression
1 ngpgrp 23210 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 ngprcan.x . . . . 5 𝑋 = (Base‘𝐺)
3 ngprcan.p . . . . 5 + = (+g𝐺)
4 eqid 2823 . . . . 5 (-g𝐺) = (-g𝐺)
52, 3, 4grppnpcan2 18195 . . . 4 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶)) = (𝐴(-g𝐺)𝐵))
61, 5sylan 582 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶)) = (𝐴(-g𝐺)𝐵))
76fveq2d 6676 . 2 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((norm‘𝐺)‘((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶))) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
8 simpl 485 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ NrmGrp)
91adantr 483 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ Grp)
10 simpr1 1190 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
11 simpr3 1192 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
122, 3grpcl 18113 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴 + 𝐶) ∈ 𝑋)
139, 10, 11, 12syl3anc 1367 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 + 𝐶) ∈ 𝑋)
14 simpr2 1191 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
152, 3grpcl 18113 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
169, 14, 11, 15syl3anc 1367 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵 + 𝐶) ∈ 𝑋)
17 eqid 2823 . . . 4 (norm‘𝐺) = (norm‘𝐺)
18 ngprcan.d . . . 4 𝐷 = (dist‘𝐺)
1917, 2, 4, 18ngpds 23215 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝐶) ∈ 𝑋) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = ((norm‘𝐺)‘((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶))))
208, 13, 16, 19syl3anc 1367 . 2 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = ((norm‘𝐺)‘((𝐴 + 𝐶)(-g𝐺)(𝐵 + 𝐶))))
2117, 2, 4, 18ngpds 23215 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
228, 10, 14, 21syl3anc 1367 . 2 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
237, 20, 223eqtr4d 2868 1 ((𝐺 ∈ NrmGrp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  distcds 16576  Grpcgrp 18105  -gcsg 18107  normcnm 23188  NrmGrpcngp 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-0g 16717  df-topgen 16719  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-xms 22932  df-ms 22933  df-nm 23194  df-ngp 23195
This theorem is referenced by:  ngplcan  23222  isngp4  23223  ngpsubcan  23225
  Copyright terms: Public domain W3C validator