Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-id Structured version   Visualization version   GIF version

Theorem nic-id 1643
 Description: Theorem id 22 expressed with ⊼. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-id (𝜏 ⊼ (𝜏𝜏))

Proof of Theorem nic-id
StepHypRef Expression
1 nic-ax 1638 . . 3 ((𝜓 ⊼ (𝜓𝜓)) ⊼ ((𝜃 ⊼ (𝜃𝜃)) ⊼ ((𝜑𝜓) ⊼ ((𝜓𝜑) ⊼ (𝜓𝜑)))))
21nic-idlem2 1642 . 2 ((((𝜑𝜓) ⊼ ((𝜓𝜑) ⊼ (𝜓𝜑))) ⊼ (𝜒 ⊼ (𝜒𝜒))) ⊼ (𝜓 ⊼ (𝜓𝜓)))
3 nic-idlem1 1641 . . 3 (((𝜒 ⊼ (𝜒𝜒)) ⊼ (𝜏 ⊼ (𝜏𝜏))) ⊼ ((((𝜑𝜓) ⊼ ((𝜓𝜑) ⊼ (𝜓𝜑))) ⊼ (𝜒 ⊼ (𝜒𝜒))) ⊼ (((𝜑𝜓) ⊼ ((𝜓𝜑) ⊼ (𝜓𝜑))) ⊼ (𝜒 ⊼ (𝜒𝜒)))))
43nic-idlem2 1642 . 2 (((((𝜑𝜓) ⊼ ((𝜓𝜑) ⊼ (𝜓𝜑))) ⊼ (𝜒 ⊼ (𝜒𝜒))) ⊼ (𝜓 ⊼ (𝜓𝜓))) ⊼ ((𝜒 ⊼ (𝜒𝜒)) ⊼ (𝜏 ⊼ (𝜏𝜏))))
52, 4nic-mp 1636 1 (𝜏 ⊼ (𝜏𝜏))
 Colors of variables: wff setvar class Syntax hints:   ⊼ wnan 1487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385  df-nan 1488 This theorem is referenced by:  nic-swap  1644  nic-idel  1649  nic-bi1  1653  nic-bi2  1654  nic-luk2  1657  nic-luk3  1658
 Copyright terms: Public domain W3C validator