MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyrest Structured version   Visualization version   GIF version

Theorem nllyrest 22088
Description: An open subspace of an n-locally 𝐴 space is also n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyrest ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ 𝑛-Locally 𝐴)

Proof of Theorem nllyrest
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 22075 . . 3 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
2 resttop 21762 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
31, 2sylan 582 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
4 restopn2 21779 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
51, 4sylan 582 . . . 4 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
6 simp1l 1193 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ 𝑛-Locally 𝐴)
7 simp2l 1195 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐽)
8 simp3 1134 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
9 nlly2i 22078 . . . . . . . . 9 ((𝐽 ∈ 𝑛-Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
106, 7, 8, 9syl3anc 1367 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
1133ad2ant1 1129 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (𝐽t 𝐵) ∈ Top)
12113ad2ant1 1129 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝐵) ∈ Top)
13 simp3l 1197 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝐽)
14 simp3r2 1278 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝑠)
15 simp2 1133 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑥)
1615elpwid 4552 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝑥)
17 simp12r 1283 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑥𝐵)
1816, 17sstrd 3976 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝐵)
1914, 18sstrd 3976 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝐵)
2063ad2ant1 1129 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴)
2120, 1syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top)
22 simp11r 1281 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵𝐽)
23 restopn2 21779 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑢 ∈ (𝐽t 𝐵) ↔ (𝑢𝐽𝑢𝐵)))
2421, 22, 23syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑢 ∈ (𝐽t 𝐵) ↔ (𝑢𝐽𝑢𝐵)))
2513, 19, 24mpbir2and 711 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢 ∈ (𝐽t 𝐵))
26 simp3r1 1277 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑦𝑢)
27 opnneip 21721 . . . . . . . . . . . . . . . 16 (((𝐽t 𝐵) ∈ Top ∧ 𝑢 ∈ (𝐽t 𝐵) ∧ 𝑦𝑢) → 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
2812, 25, 26, 27syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
29 elssuni 4860 . . . . . . . . . . . . . . . . . 18 (𝐵𝐽𝐵 𝐽)
3022, 29syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵 𝐽)
31 eqid 2821 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
3231restuni 21764 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐵 𝐽) → 𝐵 = (𝐽t 𝐵))
3321, 30, 32syl2anc 586 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵 = (𝐽t 𝐵))
3418, 33sseqtrd 4006 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 (𝐽t 𝐵))
35 eqid 2821 . . . . . . . . . . . . . . . 16 (𝐽t 𝐵) = (𝐽t 𝐵)
3635ssnei2 21718 . . . . . . . . . . . . . . 15 ((((𝐽t 𝐵) ∈ Top ∧ 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦})) ∧ (𝑢𝑠𝑠 (𝐽t 𝐵))) → 𝑠 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
3712, 28, 14, 34, 36syl22anc 836 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
3837, 15elind 4170 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥))
39 restabs 21767 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑠𝐵𝐵𝐽) → ((𝐽t 𝐵) ↾t 𝑠) = (𝐽t 𝑠))
4021, 18, 22, 39syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑠) = (𝐽t 𝑠))
41 simp3r3 1279 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝑠) ∈ 𝐴)
4240, 41eqeltrd 2913 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
4338, 42jca 514 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
44433expa 1114 . . . . . . . . . . 11 (((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
4544rexlimdvaa 3285 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) → (∃𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)))
4645expimpd 456 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ((𝑠 ∈ 𝒫 𝑥 ∧ ∃𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)))
4746reximdv2 3271 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
4810, 47mpd 15 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
49483expa 1114 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) ∧ 𝑦𝑥) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
5049ralrimiva 3182 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
5150ex 415 . . . 4 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → ((𝑥𝐽𝑥𝐵) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
525, 51sylbid 242 . . 3 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
5352ralrimiv 3181 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
54 isnlly 22071 . 2 ((𝐽t 𝐵) ∈ 𝑛-Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
553, 53, 54sylanbrc 585 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ 𝑛-Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cin 3934  wss 3935  𝒫 cpw 4538  {csn 4560   cuni 4831  cfv 6349  (class class class)co 7150  t crest 16688  Topctop 21495  neicnei 21699  𝑛-Locally cnlly 22067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507  df-fi 8869  df-rest 16690  df-topgen 16711  df-top 21496  df-topon 21513  df-bases 21548  df-nei 21700  df-nlly 22069
This theorem is referenced by:  loclly  22089  nllyidm  22091
  Copyright terms: Public domain W3C validator