MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdi Structured version   Visualization version   GIF version

Theorem nlmdsdi 23293
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdi.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nlmdsdi ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))

Proof of Theorem nlmdsdi
StepHypRef Expression
1 simpl 485 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 simpr1 1190 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑋𝐾)
3 nlmngp 23289 . . . . . . 7 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
43adantr 483 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmGrp)
5 ngpgrp 23211 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ Grp)
7 simpr2 1191 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑌𝑉)
8 simpr3 1192 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑍𝑉)
9 nlmdsdi.v . . . . . 6 𝑉 = (Base‘𝑊)
10 eqid 2824 . . . . . 6 (-g𝑊) = (-g𝑊)
119, 10grpsubcl 18182 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑌𝑉𝑍𝑉) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
126, 7, 8, 11syl3anc 1367 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
13 eqid 2824 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
14 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
15 nlmdsdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
16 nlmdsdi.k . . . . 5 𝐾 = (Base‘𝐹)
17 nlmdsdi.a . . . . 5 𝐴 = (norm‘𝐹)
189, 13, 14, 15, 16, 17nmvs 23288 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾 ∧ (𝑌(-g𝑊)𝑍) ∈ 𝑉) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
191, 2, 12, 18syl3anc 1367 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
20 nlmlmod 23290 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2120adantr 483 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ LMod)
229, 14, 15, 16, 10, 21, 2, 7, 8lmodsubdi 19694 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · (𝑌(-g𝑊)𝑍)) = ((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍)))
2322fveq2d 6677 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
2419, 23eqtr3d 2861 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
25 nlmdsdi.d . . . . 5 𝐷 = (dist‘𝑊)
2613, 9, 10, 25ngpds 23216 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑍𝑉) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
274, 7, 8, 26syl3anc 1367 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
2827oveq2d 7175 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
299, 15, 14, 16lmodvscl 19654 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
3021, 2, 7, 29syl3anc 1367 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑌) ∈ 𝑉)
319, 15, 14, 16lmodvscl 19654 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3221, 2, 8, 31syl3anc 1367 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3313, 9, 10, 25ngpds 23216 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑌) ∈ 𝑉 ∧ (𝑋 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
344, 30, 32, 33syl3anc 1367 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
3524, 28, 343eqtr4d 2869 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159   · cmul 10545  Basecbs 16486  Scalarcsca 16571   ·𝑠 cvsca 16572  distcds 16577  Grpcgrp 18106  -gcsg 18108  LModclmod 19637  normcnm 23189  NrmGrpcngp 23190  NrmModcnlm 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-plusg 16581  df-0g 16718  df-topgen 16720  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mgp 19243  df-ur 19255  df-ring 19302  df-lmod 19639  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-xms 22933  df-ms 22934  df-nm 23195  df-ngp 23196  df-nlm 23199
This theorem is referenced by:  nlmvscnlem2  23297
  Copyright terms: Public domain W3C validator