![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmmul0or | Structured version Visualization version GIF version |
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmmul0or.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmmul0or.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmmul0or.z | ⊢ 0 = (0g‘𝑊) |
nlmmul0or.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmmul0or.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmmul0or.o | ⊢ 𝑂 = (0g‘𝐹) |
Ref | Expression |
---|---|
nlmmul0or | ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlmmul0or.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | nlmngp2 22683 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
3 | 2 | 3ad2ant1 1128 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ NrmGrp) |
4 | simp2 1132 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝐾) | |
5 | nlmmul0or.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2758 | . . . . . 6 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
7 | 5, 6 | nmcl 22619 | . . . . 5 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
8 | 3, 4, 7 | syl2anc 696 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
9 | 8 | recnd 10258 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ) |
10 | nlmngp 22680 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
11 | 10 | 3ad2ant1 1128 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ NrmGrp) |
12 | simp3 1133 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
13 | nlmmul0or.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
14 | eqid 2758 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
15 | 13, 14 | nmcl 22619 | . . . . 5 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
16 | 11, 12, 15 | syl2anc 696 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
17 | 16 | recnd 10258 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ) |
18 | 9, 17 | mul0ord 10867 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0))) |
19 | nlmmul0or.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
20 | 13, 14, 19, 1, 5, 6 | nmvs 22679 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵))) |
21 | 20 | eqeq1d 2760 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0)) |
22 | nlmlmod 22681 | . . . . 5 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
23 | 13, 1, 19, 5 | lmodvscl 19080 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
24 | 22, 23 | syl3an1 1167 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
25 | nlmmul0or.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
26 | 13, 14, 25 | nmeq0 22621 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
27 | 11, 24, 26 | syl2anc 696 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
28 | 21, 27 | bitr3d 270 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
29 | nlmmul0or.o | . . . . 5 ⊢ 𝑂 = (0g‘𝐹) | |
30 | 5, 6, 29 | nmeq0 22621 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
31 | 3, 4, 30 | syl2anc 696 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
32 | 13, 14, 25 | nmeq0 22621 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
33 | 11, 12, 32 | syl2anc 696 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
34 | 31, 33 | orbi12d 748 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
35 | 18, 28, 34 | 3bitr3d 298 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 ‘cfv 6047 (class class class)co 6811 ℝcr 10125 0cc0 10126 · cmul 10131 Basecbs 16057 Scalarcsca 16144 ·𝑠 cvsca 16145 0gc0g 16300 LModclmod 19063 normcnm 22580 NrmGrpcngp 22581 NrmModcnlm 22584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-map 8023 df-en 8120 df-dom 8121 df-sdom 8122 df-sup 8511 df-inf 8512 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-n0 11483 df-z 11568 df-uz 11878 df-q 11980 df-rp 12024 df-xneg 12137 df-xadd 12138 df-xmul 12139 df-0g 16302 df-topgen 16304 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-grp 17624 df-lmod 19065 df-psmet 19938 df-xmet 19939 df-met 19940 df-bl 19941 df-mopn 19942 df-top 20899 df-topon 20916 df-topsp 20937 df-bases 20950 df-xms 22324 df-ms 22325 df-nm 22586 df-ngp 22587 df-nrg 22589 df-nlm 22590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |