HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdoplbi Structured version   Visualization version   GIF version

Theorem nmbdoplbi 28732
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdoplb.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmbdoplbi (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))

Proof of Theorem nmbdoplbi
StepHypRef Expression
1 fveq2 6148 . . . 4 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
21fveq2d 6152 . . 3 (𝐴 = 0 → (norm‘(𝑇𝐴)) = (norm‘(𝑇‘0)))
3 fveq2 6148 . . . 4 (𝐴 = 0 → (norm𝐴) = (norm‘0))
43oveq2d 6620 . . 3 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = ((normop𝑇) · (norm‘0)))
52, 4breq12d 4626 . 2 (𝐴 = 0 → ((norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))))
6 nmbdoplb.1 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
7 bdopln 28569 . . . . . . . . . . . 12 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
86, 7ax-mp 5 . . . . . . . . . . 11 𝑇 ∈ LinOp
98lnopfi 28677 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
109ffvelrni 6314 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
11 normcl 27831 . . . . . . . . 9 ((𝑇𝐴) ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1312adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℝ)
1413recnd 10012 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℂ)
15 normcl 27831 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1615adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
1716recnd 10012 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
18 normne0 27836 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1918biimpar 502 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2014, 17, 19divrec2d 10749 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
2116, 19rereccld 10796 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
2221recnd 10012 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
23 simpl 473 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
248lnopmuli 28680 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2522, 23, 24syl2anc 692 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2625fveq2d 6152 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (norm‘((1 / (norm𝐴)) · (𝑇𝐴))))
2710adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℋ)
28 norm-iii 27846 . . . . . . 7 (((1 / (norm𝐴)) ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
2922, 27, 28syl2anc 692 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
30 normgt0 27833 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
3130biimpa 501 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
3216, 31recgt0d 10902 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
33 0re 9984 . . . . . . . . . 10 0 ∈ ℝ
34 ltle 10070 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3533, 34mpan 705 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3621, 32, 35sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
3721, 36absidd 14095 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
3837oveq1d 6619 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
3926, 29, 383eqtrrd 2660 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
4020, 39eqtrd 2655 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
41 hvmulcl 27719 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4222, 23, 41syl2anc 692 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
43 normcl 27831 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
4442, 43syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
45 norm1 27955 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
46 eqle 10083 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
4744, 45, 46syl2anc 692 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
48 nmoplb 28615 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
499, 48mp3an1 1408 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5042, 47, 49syl2anc 692 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5140, 50eqbrtrd 4635 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇))
52 nmopre 28578 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
536, 52ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
5453a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
55 ledivmul2 10846 . . . 4 (((norm‘(𝑇𝐴)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5613, 54, 16, 31, 55syl112anc 1327 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5751, 56mpbid 222 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
58 0le0 11054 . . . 4 0 ≤ 0
598lnop0i 28678 . . . . . 6 (𝑇‘0) = 0
6059fveq2i 6151 . . . . 5 (norm‘(𝑇‘0)) = (norm‘0)
61 norm0 27834 . . . . 5 (norm‘0) = 0
6260, 61eqtri 2643 . . . 4 (norm‘(𝑇‘0)) = 0
6361oveq2i 6615 . . . . 5 ((normop𝑇) · (norm‘0)) = ((normop𝑇) · 0)
6453recni 9996 . . . . . 6 (normop𝑇) ∈ ℂ
6564mul01i 10170 . . . . 5 ((normop𝑇) · 0) = 0
6663, 65eqtri 2643 . . . 4 ((normop𝑇) · (norm‘0)) = 0
6758, 62, 663brtr4i 4643 . . 3 (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))
6867a1i 11 . 2 (𝐴 ∈ ℋ → (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0)))
695, 57, 68pm2.61ne 2875 1 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  cle 10019   / cdiv 10628  abscabs 13908  chil 27625   · csm 27627  normcno 27629  0c0v 27630  normopcnop 27651  LinOpclo 27653  BndLinOpcbo 27654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hilex 27705  ax-hfvadd 27706  ax-hvcom 27707  ax-hvass 27708  ax-hv0cl 27709  ax-hvaddid 27710  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr1 27714  ax-hvdistr2 27715  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his2 27789  ax-his3 27790  ax-his4 27791
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-grpo 27196  df-gid 27197  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-nmcv 27304  df-hnorm 27674  df-hba 27675  df-hvsub 27677  df-nmop 28547  df-lnop 28549  df-bdop 28550
This theorem is referenced by:  nmbdoplb  28733  nmopcoadji  28809
  Copyright terms: Public domain W3C validator