MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblolbii Structured version   Visualization version   GIF version

Theorem nmblolbii 27500
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblolbi.1 𝑋 = (BaseSet‘𝑈)
nmblolbi.4 𝐿 = (normCV𝑈)
nmblolbi.5 𝑀 = (normCV𝑊)
nmblolbi.6 𝑁 = (𝑈 normOpOLD 𝑊)
nmblolbi.7 𝐵 = (𝑈 BLnOp 𝑊)
nmblolbi.u 𝑈 ∈ NrmCVec
nmblolbi.w 𝑊 ∈ NrmCVec
nmblolbii.b 𝑇𝐵
Assertion
Ref Expression
nmblolbii (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))

Proof of Theorem nmblolbii
StepHypRef Expression
1 fveq2 6148 . . . 4 (𝐴 = (0vec𝑈) → (𝑇𝐴) = (𝑇‘(0vec𝑈)))
21fveq2d 6152 . . 3 (𝐴 = (0vec𝑈) → (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇‘(0vec𝑈))))
3 fveq2 6148 . . . 4 (𝐴 = (0vec𝑈) → (𝐿𝐴) = (𝐿‘(0vec𝑈)))
43oveq2d 6620 . . 3 (𝐴 = (0vec𝑈) → ((𝑁𝑇) · (𝐿𝐴)) = ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
52, 4breq12d 4626 . 2 (𝐴 = (0vec𝑈) → ((𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)) ↔ (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))))
6 nmblolbi.u . . . . . . . . 9 𝑈 ∈ NrmCVec
7 nmblolbi.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
8 nmblolbi.4 . . . . . . . . . 10 𝐿 = (normCV𝑈)
97, 8nvcl 27362 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐿𝐴) ∈ ℝ)
106, 9mpan 705 . . . . . . . 8 (𝐴𝑋 → (𝐿𝐴) ∈ ℝ)
1110adantr 481 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℝ)
12 eqid 2621 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
137, 12, 8nvz 27370 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
146, 13mpan 705 . . . . . . . . 9 (𝐴𝑋 → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
1514necon3bid 2834 . . . . . . . 8 (𝐴𝑋 → ((𝐿𝐴) ≠ 0 ↔ 𝐴 ≠ (0vec𝑈)))
1615biimpar 502 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ≠ 0)
1711, 16rereccld 10796 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℝ)
187, 12, 8nvgt0 27375 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
196, 18mpan 705 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
2019biimpa 501 . . . . . . . 8 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (𝐿𝐴))
2111, 20recgt0d 10902 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (1 / (𝐿𝐴)))
22 0re 9984 . . . . . . . 8 0 ∈ ℝ
23 ltle 10070 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / (𝐿𝐴)) ∈ ℝ) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2422, 17, 23sylancr 694 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2521, 24mpd 15 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 ≤ (1 / (𝐿𝐴)))
26 nmblolbi.w . . . . . . . . 9 𝑊 ∈ NrmCVec
27 nmblolbii.b . . . . . . . . 9 𝑇𝐵
28 eqid 2621 . . . . . . . . . 10 (BaseSet‘𝑊) = (BaseSet‘𝑊)
29 nmblolbi.7 . . . . . . . . . 10 𝐵 = (𝑈 BLnOp 𝑊)
307, 28, 29blof 27486 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋⟶(BaseSet‘𝑊))
316, 26, 27, 30mp3an 1421 . . . . . . . 8 𝑇:𝑋⟶(BaseSet‘𝑊)
3231ffvelrni 6314 . . . . . . 7 (𝐴𝑋 → (𝑇𝐴) ∈ (BaseSet‘𝑊))
3332adantr 481 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
34 eqid 2621 . . . . . . . 8 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
35 nmblolbi.5 . . . . . . . 8 𝑀 = (normCV𝑊)
3628, 34, 35nvsge0 27365 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3726, 36mp3an1 1408 . . . . . 6 ((((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3817, 25, 33, 37syl21anc 1322 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3917recnd 10012 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℂ)
40 simpl 473 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 𝐴𝑋)
41 eqid 2621 . . . . . . . . . . 11 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
4241, 29bloln 27485 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
436, 26, 27, 42mp3an 1421 . . . . . . . . 9 𝑇 ∈ (𝑈 LnOp 𝑊)
446, 26, 433pm3.2i 1237 . . . . . . . 8 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊))
45 eqid 2621 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
467, 45, 34, 41lnomul 27461 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ ((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4744, 46mpan 705 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4839, 40, 47syl2anc 692 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4948fveq2d 6152 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) = (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))))
5028, 35nvcl 27362 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5126, 32, 50sylancr 694 . . . . . . . 8 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5251adantr 481 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5352recnd 10012 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℂ)
5411recnd 10012 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℂ)
5553, 54, 16divrec2d 10749 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
5638, 49, 553eqtr4rd 2666 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))))
577, 45nvscl 27327 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
586, 57mp3an1 1408 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
5958ancoms 469 . . . . . 6 ((𝐴𝑋 ∧ (1 / (𝐿𝐴)) ∈ ℂ) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
6039, 59syldan 487 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
617, 8nvcl 27362 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
626, 60, 61sylancr 694 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
637, 45, 12, 8nv1 27376 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
646, 63mp3an1 1408 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
65 eqle 10083 . . . . . 6 (((𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
6662, 64, 65syl2anc 692 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
676, 26, 313pm3.2i 1237 . . . . . 6 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊))
68 nmblolbi.6 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
697, 28, 8, 35, 68nmoolb 27472 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) ∧ (((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7067, 69mpan 705 . . . . 5 ((((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7160, 66, 70syl2anc 692 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7256, 71eqbrtrd 4635 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇))
737, 28, 68, 29nmblore 27487 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ)
746, 26, 27, 73mp3an 1421 . . . . 5 (𝑁𝑇) ∈ ℝ
7574a1i 11 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑁𝑇) ∈ ℝ)
76 ledivmul2 10846 . . . 4 (((𝑀‘(𝑇𝐴)) ∈ ℝ ∧ (𝑁𝑇) ∈ ℝ ∧ ((𝐿𝐴) ∈ ℝ ∧ 0 < (𝐿𝐴))) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7752, 75, 11, 20, 76syl112anc 1327 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7872, 77mpbid 222 . 2 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
79 0le0 11054 . . . 4 0 ≤ 0
80 eqid 2621 . . . . . . . 8 (0vec𝑊) = (0vec𝑊)
817, 28, 12, 80, 41lno0 27457 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
826, 26, 43, 81mp3an 1421 . . . . . 6 (𝑇‘(0vec𝑈)) = (0vec𝑊)
8382fveq2i 6151 . . . . 5 (𝑀‘(𝑇‘(0vec𝑈))) = (𝑀‘(0vec𝑊))
8480, 35nvz0 27369 . . . . . 6 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
8526, 84ax-mp 5 . . . . 5 (𝑀‘(0vec𝑊)) = 0
8683, 85eqtri 2643 . . . 4 (𝑀‘(𝑇‘(0vec𝑈))) = 0
8712, 8nvz0 27369 . . . . . . 7 (𝑈 ∈ NrmCVec → (𝐿‘(0vec𝑈)) = 0)
886, 87ax-mp 5 . . . . . 6 (𝐿‘(0vec𝑈)) = 0
8988oveq2i 6615 . . . . 5 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = ((𝑁𝑇) · 0)
9074recni 9996 . . . . . 6 (𝑁𝑇) ∈ ℂ
9190mul01i 10170 . . . . 5 ((𝑁𝑇) · 0) = 0
9289, 91eqtri 2643 . . . 4 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = 0
9379, 86, 923brtr4i 4643 . . 3 (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))
9493a1i 11 . 2 (𝐴𝑋 → (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
955, 78, 94pm2.61ne 2875 1 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  cle 10019   / cdiv 10628  NrmCVeccnv 27285  BaseSetcba 27287   ·𝑠OLD cns 27288  0veccn0v 27289  normCVcnmcv 27291   LnOp clno 27441   normOpOLD cnmoo 27442   BLnOp cblo 27443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-grpo 27193  df-gid 27194  df-ginv 27195  df-ablo 27245  df-vc 27260  df-nv 27293  df-va 27296  df-ba 27297  df-sm 27298  df-0v 27299  df-nmcv 27301  df-lno 27445  df-nmoo 27446  df-blo 27447
This theorem is referenced by:  nmblolbi  27501
  Copyright terms: Public domain W3C validator