![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmblore | Structured version Visualization version GIF version |
Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmblore.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmblore.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmblore.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmblore.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
Ref | Expression |
---|---|
nmblore | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmblore.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmblore.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | nmblore.5 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
4 | 1, 2, 3 | blof 27920 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
5 | nmblore.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
6 | 1, 2, 5 | nmogtmnf 27905 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) |
7 | 4, 6 | syld3an3 1508 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → -∞ < (𝑁‘𝑇)) |
8 | eqid 2748 | . . . . 5 ⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) | |
9 | 5, 8, 3 | isblo 27917 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑁‘𝑇) < +∞))) |
10 | 9 | simplbda 655 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) < +∞) |
11 | 10 | 3impa 1100 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) < +∞) |
12 | 1, 2, 5 | nmoxr 27901 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
13 | 4, 12 | syld3an3 1508 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ*) |
14 | xrrebnd 12163 | . . 3 ⊢ ((𝑁‘𝑇) ∈ ℝ* → ((𝑁‘𝑇) ∈ ℝ ↔ (-∞ < (𝑁‘𝑇) ∧ (𝑁‘𝑇) < +∞))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → ((𝑁‘𝑇) ∈ ℝ ↔ (-∞ < (𝑁‘𝑇) ∧ (𝑁‘𝑇) < +∞))) |
16 | 7, 11, 15 | mpbir2and 995 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 class class class wbr 4792 ⟶wf 6033 ‘cfv 6037 (class class class)co 6801 ℝcr 10098 +∞cpnf 10234 -∞cmnf 10235 ℝ*cxr 10236 < clt 10237 NrmCVeccnv 27719 BaseSetcba 27721 LnOp clno 27875 normOpOLD cnmoo 27876 BLnOp cblo 27877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-map 8013 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-grpo 27627 df-gid 27628 df-ginv 27629 df-ablo 27679 df-vc 27694 df-nv 27727 df-va 27730 df-ba 27731 df-sm 27732 df-0v 27733 df-nmcv 27735 df-lno 27879 df-nmoo 27880 df-blo 27881 |
This theorem is referenced by: nmblolbii 27934 isblo3i 27936 blocni 27940 htthlem 28054 |
Copyright terms: Public domain | W3C validator |