HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlbi Structured version   Visualization version   GIF version

Theorem nmcfnlbi 29039
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnlbi (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmcfnlbi
StepHypRef Expression
1 fveq2 6229 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
2 nmcfnex.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfn0i 29029 . . . . . 6 (𝑇‘0) = 0
41, 3syl6eq 2701 . . . . 5 (𝐴 = 0 → (𝑇𝐴) = 0)
54abs00bd 14075 . . . 4 (𝐴 = 0 → (abs‘(𝑇𝐴)) = 0)
6 0le0 11148 . . . . 5 0 ≤ 0
7 fveq2 6229 . . . . . . . 8 (𝐴 = 0 → (norm𝐴) = (norm‘0))
8 norm0 28113 . . . . . . . 8 (norm‘0) = 0
97, 8syl6eq 2701 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = 0)
109oveq2d 6706 . . . . . 6 (𝐴 = 0 → ((normfn𝑇) · (norm𝐴)) = ((normfn𝑇) · 0))
11 nmcfnex.2 . . . . . . . . 9 𝑇 ∈ ContFn
122, 11nmcfnexi 29038 . . . . . . . 8 (normfn𝑇) ∈ ℝ
1312recni 10090 . . . . . . 7 (normfn𝑇) ∈ ℂ
1413mul01i 10264 . . . . . 6 ((normfn𝑇) · 0) = 0
1510, 14syl6req 2702 . . . . 5 (𝐴 = 0 → 0 = ((normfn𝑇) · (norm𝐴)))
166, 15syl5breq 4722 . . . 4 (𝐴 = 0 → 0 ≤ ((normfn𝑇) · (norm𝐴)))
175, 16eqbrtrd 4707 . . 3 (𝐴 = 0 → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
1817adantl 481 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
192lnfnfi 29028 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
2019ffvelrni 6398 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
2120abscld 14219 . . . . . . . 8 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℝ)
2322recnd 10106 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℂ)
24 normcl 28110 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2524adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℝ)
2625recnd 10106 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℂ)
27 norm-i 28114 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴) = 0 ↔ 𝐴 = 0))
2827notbid 307 . . . . . . . 8 (𝐴 ∈ ℋ → (¬ (norm𝐴) = 0 ↔ ¬ 𝐴 = 0))
2928biimpar 501 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ¬ (norm𝐴) = 0)
3029neqned 2830 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ≠ 0)
3123, 26, 30divrec2d 10843 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
3225, 30rereccld 10890 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℝ)
3332recnd 10106 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℂ)
34 simpl 472 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 𝐴 ∈ ℋ)
352lnfnmuli 29031 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3633, 34, 35syl2anc 694 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3736fveq2d 6233 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (abs‘((1 / (norm𝐴)) · (𝑇𝐴))))
3820adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇𝐴) ∈ ℂ)
3933, 38absmuld 14237 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))))
40 df-ne 2824 . . . . . . . . . . . 12 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
41 normgt0 28112 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
4240, 41syl5bbr 274 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (¬ 𝐴 = 0 ↔ 0 < (norm𝐴)))
4342biimpa 500 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (norm𝐴))
4425, 43recgt0d 10996 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (1 / (norm𝐴)))
45 0re 10078 . . . . . . . . . 10 0 ∈ ℝ
46 ltle 10164 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4745, 46mpan 706 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4832, 44, 47sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 ≤ (1 / (norm𝐴)))
4932, 48absidd 14205 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
5049oveq1d 6705 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
5137, 39, 503eqtrrd 2690 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
5231, 51eqtrd 2685 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
53 hvmulcl 27998 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5433, 34, 53syl2anc 694 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
55 normcl 28110 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5654, 55syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
57 norm1 28234 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
5840, 57sylan2br 492 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
59 eqle 10177 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
6056, 58, 59syl2anc 694 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
61 nmfnlb 28911 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6219, 61mp3an1 1451 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6354, 60, 62syl2anc 694 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6452, 63eqbrtrd 4707 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇))
6512a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (normfn𝑇) ∈ ℝ)
66 ledivmul2 10940 . . . 4 (((abs‘(𝑇𝐴)) ∈ ℝ ∧ (normfn𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6722, 65, 25, 43, 66syl112anc 1370 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6864, 67mpbid 222 . 2 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
6918, 68pm2.61dan 849 1 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  abscabs 14018  chil 27904   · csm 27906  normcno 27908  0c0v 27909  normfncnmf 27936  ContFnccnfn 27938  LinFnclf 27939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hilex 27984  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-hnorm 27953  df-hvsub 27956  df-nmfn 28832  df-cnfn 28834  df-lnfn 28835
This theorem is referenced by:  nmcfnlb  29041
  Copyright terms: Public domain W3C validator