MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcn Structured version   Visualization version   GIF version

Theorem nmcn 23446
Description: The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmcn.n 𝑁 = (norm‘𝐺)
nmcn.j 𝐽 = (TopOpen‘𝐺)
nmcn.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
nmcn (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nmcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmcn.n . . 3 𝑁 = (norm‘𝐺)
2 eqid 2821 . . 3 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2821 . . 3 (0g𝐺) = (0g𝐺)
4 eqid 2821 . . 3 (dist‘𝐺) = (dist‘𝐺)
51, 2, 3, 4nmfval 23192 . 2 𝑁 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺)))
6 nmcn.j . . 3 𝐽 = (TopOpen‘𝐺)
7 nmcn.k . . 3 𝐾 = (topGen‘ran (,))
8 ngpms 23203 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
9 ngptps 23205 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp)
102, 6istps 21536 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺)))
119, 10sylib 220 . . 3 (𝐺 ∈ NrmGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
1211cnmptid 22263 . . 3 (𝐺 ∈ NrmGrp → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
13 ngpgrp 23202 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
142, 3grpidcl 18125 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
1513, 14syl 17 . . . 4 (𝐺 ∈ NrmGrp → (0g𝐺) ∈ (Base‘𝐺))
1611, 11, 15cnmptc 22264 . . 3 (𝐺 ∈ NrmGrp → (𝑥 ∈ (Base‘𝐺) ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
174, 6, 7, 8, 11, 12, 16cnmpt1ds 23444 . 2 (𝐺 ∈ NrmGrp → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ∈ (𝐽 Cn 𝐾))
185, 17eqeltrid 2917 1 (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cmpt 5139  ran crn 5551  cfv 6350  (class class class)co 7150  (,)cioo 12732  Basecbs 16477  distcds 16568  TopOpenctopn 16689  topGenctg 16705  0gc0g 16707  Grpcgrp 18097  TopOnctopon 21512  TopSpctps 21534   Cn ccn 21826  normcnm 23180  NrmGrpcngp 23181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-ordt 16768  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-ps 17804  df-tsr 17805  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-nm 23186  df-ngp 23187
This theorem is referenced by:  ngnmcncn  23447  abscn  23448
  Copyright terms: Public domain W3C validator