Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcopexi Structured version   Visualization version   GIF version

Theorem nmcopexi 28856
 Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1 𝑇 ∈ LinOp
nmcopex.2 𝑇 ∈ ContOp
Assertion
Ref Expression
nmcopexi (normop𝑇) ∈ ℝ

Proof of Theorem nmcopexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcopex.2 . . . 4 𝑇 ∈ ContOp
2 ax-hv0cl 27830 . . . 4 0 ∈ ℋ
3 1rp 11821 . . . 4 1 ∈ ℝ+
4 cnopc 28742 . . . 4 ((𝑇 ∈ ContOp ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1422 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 27903 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6182 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 4654 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcopex.1 . . . . . . . . . . 11 𝑇 ∈ LinOp
109lnop0i 28799 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 6646 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnopfi 28798 . . . . . . . . . . 11 𝑇: ℋ⟶ ℋ
1312ffvelrni 6344 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
14 hvsub0 27903 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1513, 14syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1611, 15syl5eq 2666 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1716fveq2d 6182 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘((𝑇𝑧) − (𝑇‘0))) = (norm‘(𝑇𝑧)))
1817breq1d 4654 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (norm‘(𝑇𝑧)) < 1))
198, 18imbi12d 334 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)))
2019ralbiia 2976 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
2120rexbii 3037 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
225, 21mpbi 220 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)
23 nmopval 28685 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
2412, 23ax-mp 5 . 2 (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < )
2512ffvelrni 6344 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
26 normcl 27952 . . 3 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2725, 26syl 17 . 2 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2810fveq2i 6181 . . 3 (norm‘(𝑇‘0)) = (norm‘0)
29 norm0 27955 . . 3 (norm‘0) = 0
3028, 29eqtri 2642 . 2 (norm‘(𝑇‘0)) = 0
31 rpcn 11826 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
329lnopmuli 28801 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3331, 32sylan 488 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3433fveq2d 6182 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘(𝑇‘((𝑦 / 2) · 𝑥))) = (norm‘((𝑦 / 2) · (𝑇𝑥))))
35 norm-iii 27967 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
3631, 25, 35syl2an 494 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
37 rpre 11824 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
38 rpge0 11830 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3937, 38absidd 14142 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4039adantr 481 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4140oveq1d 6650 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))) = ((𝑦 / 2) · (norm‘(𝑇𝑥))))
4234, 36, 413eqtrrd 2659 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm‘(𝑇𝑥))) = (norm‘(𝑇‘((𝑦 / 2) · 𝑥))))
4322, 24, 27, 30, 42nmcexi 28855 1 (normop𝑇) ∈ ℝ
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481   ∈ wcel 1988  {cab 2606  ∀wral 2909  ∃wrex 2910   class class class wbr 4644  ⟶wf 5872  ‘cfv 5876  (class class class)co 6635  supcsup 8331  ℂcc 9919  ℝcr 9920  0cc0 9921  1c1 9922   · cmul 9926  ℝ*cxr 10058   < clt 10059   ≤ cle 10060   / cdiv 10669  2c2 11055  ℝ+crp 11817  abscabs 13955   ℋchil 27746   ·ℎ csm 27748  normℎcno 27750  0ℎc0v 27751   −ℎ cmv 27752  normopcnop 27772  ContOpccop 27773  LinOpclo 27774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-hilex 27826  ax-hfvadd 27827  ax-hvass 27829  ax-hv0cl 27830  ax-hvaddid 27831  ax-hfvmul 27832  ax-hvmulid 27833  ax-hvmulass 27834  ax-hvdistr2 27836  ax-hvmul0 27837  ax-hfi 27906  ax-his1 27909  ax-his3 27911  ax-his4 27912 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-hnorm 27795  df-hvsub 27798  df-nmop 28668  df-cnop 28669  df-lnop 28670 This theorem is referenced by:  nmcoplbi  28857  nmcopex  28858  cnlnadjlem2  28897  cnlnadjlem7  28902  cnlnadjlem8  28903
 Copyright terms: Public domain W3C validator