HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcoplbi Structured version   Visualization version   GIF version

Theorem nmcoplbi 28072
Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1 𝑇 ∈ LinOp
nmcopex.2 𝑇 ∈ ConOp
Assertion
Ref Expression
nmcoplbi (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))

Proof of Theorem nmcoplbi
StepHypRef Expression
1 0le0 10952 . . . . 5 0 ≤ 0
21a1i 11 . . . 4 (𝐴 = 0 → 0 ≤ 0)
3 fveq2 6083 . . . . . . 7 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
4 nmcopex.1 . . . . . . . 8 𝑇 ∈ LinOp
54lnop0i 28014 . . . . . . 7 (𝑇‘0) = 0
63, 5syl6eq 2654 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = 0)
76fveq2d 6087 . . . . 5 (𝐴 = 0 → (norm‘(𝑇𝐴)) = (norm‘0))
8 norm0 27170 . . . . 5 (norm‘0) = 0
97, 8syl6eq 2654 . . . 4 (𝐴 = 0 → (norm‘(𝑇𝐴)) = 0)
10 fveq2 6083 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = (norm‘0))
1110, 8syl6eq 2654 . . . . . 6 (𝐴 = 0 → (norm𝐴) = 0)
1211oveq2d 6538 . . . . 5 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = ((normop𝑇) · 0))
13 nmcopex.2 . . . . . . . 8 𝑇 ∈ ConOp
144, 13nmcopexi 28071 . . . . . . 7 (normop𝑇) ∈ ℝ
1514recni 9903 . . . . . 6 (normop𝑇) ∈ ℂ
1615mul01i 10072 . . . . 5 ((normop𝑇) · 0) = 0
1712, 16syl6eq 2654 . . . 4 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = 0)
182, 9, 173brtr4d 4604 . . 3 (𝐴 = 0 → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
1918adantl 480 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
20 normcl 27167 . . . . . . . . 9 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2120adantr 479 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
22 normne0 27172 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2322biimpar 500 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2421, 23rereccld 10696 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
25 normgt0 27169 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
2625biimpa 499 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
2721, 26recgt0d 10802 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
28 0re 9891 . . . . . . . . 9 0 ∈ ℝ
29 ltle 9972 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3028, 29mpan 701 . . . . . . . 8 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3124, 27, 30sylc 62 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
3224, 31absidd 13950 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
3332oveq1d 6537 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
3424recnd 9919 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
35 simpl 471 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
364lnopmuli 28016 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3734, 35, 36syl2anc 690 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3837fveq2d 6087 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (norm‘((1 / (norm𝐴)) · (𝑇𝐴))))
394lnopfi 28013 . . . . . . . . 9 𝑇: ℋ⟶ ℋ
4039ffvelrni 6246 . . . . . . . 8 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
4140adantr 479 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℋ)
42 norm-iii 27182 . . . . . . 7 (((1 / (norm𝐴)) ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
4334, 41, 42syl2anc 690 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
4438, 43eqtrd 2638 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
45 normcl 27167 . . . . . . . . 9 ((𝑇𝐴) ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
4640, 45syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
4746adantr 479 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℝ)
4847recnd 9919 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℂ)
4921recnd 9919 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
5048, 49, 23divrec2d 10649 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
5133, 44, 503eqtr4rd 2649 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
52 hvmulcl 27055 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5334, 35, 52syl2anc 690 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
54 normcl 27167 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5553, 54syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
56 norm1 27291 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
57 eqle 9985 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
5855, 56, 57syl2anc 690 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
59 nmoplb 27951 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
6039, 59mp3an1 1402 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
6153, 58, 60syl2anc 690 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
6251, 61eqbrtrd 4594 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇))
6314a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
64 ledivmul2 10746 . . . 4 (((norm‘(𝑇𝐴)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
6547, 63, 21, 26, 64syl112anc 1321 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
6662, 65mpbid 220 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
6719, 66pm2.61dane 2863 1 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2774   class class class wbr 4572  wf 5781  cfv 5785  (class class class)co 6522  cc 9785  cr 9786  0cc0 9787  1c1 9788   · cmul 9792   < clt 9925  cle 9926   / cdiv 10528  abscabs 13763  chil 26961   · csm 26963  normcno 26965  0c0v 26966  normopcnop 26987  ConOpccop 26988  LinOpclo 26989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865  ax-hilex 27041  ax-hfvadd 27042  ax-hvcom 27043  ax-hvass 27044  ax-hv0cl 27045  ax-hvaddid 27046  ax-hfvmul 27047  ax-hvmulid 27048  ax-hvmulass 27049  ax-hvdistr1 27050  ax-hvdistr2 27051  ax-hvmul0 27052  ax-hfi 27121  ax-his1 27124  ax-his2 27125  ax-his3 27126  ax-his4 27127
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-er 7601  df-map 7718  df-en 7814  df-dom 7815  df-sdom 7816  df-sup 8203  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-n0 11135  df-z 11206  df-uz 11515  df-rp 11660  df-seq 12614  df-exp 12673  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-grpo 26492  df-gid 26493  df-ablo 26547  df-vc 26562  df-nv 26610  df-va 26613  df-ba 26614  df-sm 26615  df-0v 26616  df-nmcv 26618  df-hnorm 27010  df-hba 27011  df-hvsub 27013  df-nmop 27883  df-cnop 27884  df-lnop 27885
This theorem is referenced by:  nmcoplb  28074  cnlnadjlem2  28112  cnlnadjlem7  28117
  Copyright terms: Public domain W3C validator