MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmf2 Structured version   Visualization version   GIF version

Theorem nmf2 23201
Description: The norm is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmf2.n 𝑁 = (norm‘𝑊)
nmf2.x 𝑋 = (Base‘𝑊)
nmf2.d 𝐷 = (dist‘𝑊)
nmf2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmf2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)

Proof of Theorem nmf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmf2.n . . . 4 𝑁 = (norm‘𝑊)
2 nmf2.x . . . 4 𝑋 = (Base‘𝑊)
3 eqid 2821 . . . 4 (0g𝑊) = (0g𝑊)
4 nmf2.d . . . 4 𝐷 = (dist‘𝑊)
5 nmf2.e . . . 4 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
61, 2, 3, 4, 5nmfval2 23199 . . 3 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
76adantr 483 . 2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
82, 3grpidcl 18130 . . . 4 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑋)
9 metcl 22941 . . . . 5 ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋 ∧ (0g𝑊) ∈ 𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
1093comr 1121 . . . 4 (((0g𝑊) ∈ 𝑋𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
118, 10syl3an1 1159 . . 3 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
12113expa 1114 . 2 (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
137, 12fmpt3d 6879 1 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cmpt 5145   × cxp 5552  cres 5556  wf 6350  cfv 6354  (class class class)co 7155  cr 10535  Basecbs 16482  distcds 16573  0gc0g 16712  Grpcgrp 18102  Metcmet 20530  normcnm 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8407  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-met 20538  df-nm 23191
This theorem is referenced by:  isngp2  23205  isngp3  23206  nmf  23223
  Copyright terms: Public domain W3C validator